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For modules in the HERON-FPGA and HERON-IO families, HUNT ENGINEERING provide a 
comprehensive VHDL support package. The VHDL package consists of a “top level”, with 
corresponding user constraints file, VHDL sources and simulation files for the Hardware Interface Layer, 
and User VHDL files as part of many examples. 

The Hardware Interface Layer correctly interfaces with the Module hardware, while the top level (top.vhd) 
defines all inputs and outputs from the FPGA on your module. 

With Version 2.0 of the Hardware Interface Layer, HUNT ENGINEERING introduced two new 
interface functions that provide full access to multiple HERON input FIFOs and multiple HERON 
output FIFOs. 

This document discusses the capabilities of the new FIFO interface components, using several different 
examples to illustrate the many different ways that these new components can be used. For users that have 
an existing project using version 1.x of the Hardware Interface Layer, this document can be used alongside 
the document ‘Converting HIL v1.x Projects to v2.0’ which discusses how to move to the new v2.0 
Hardware Interface Layer. 
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Multiple FIFO Access Components 

With Version 2.0 of the Hardware Interface Layer, HUNT ENGINEERING introduced two new 
interface components for reading and writing multiple HERON FIFOs. 

The component HE_RD_6F enables an FPGA design to read from up to six HERON Input FIFOs 
concurrently, and has been added in place of the existing component HE_RD_1F. The component 
HE_WR_6F enables an FPGA design to write to up to six HERON Output FIFOs concurrently, and 
has been added in place of the existing component HE_WR_1F. 

The interface components HE_RD_6F and HE_WR_6F translate the access of the external HERON 
FIFO interfaces provided on all HERON modules into a simple high performance internal interface to 
which a user can connect their own logic. 

The Six HERON-FIFO Read Interface 

The HE_RD_6F component works by providing six ‘read-request’ signals. Each time a particular FIFO 
read request is asserted the HE_RD_6F component will try to provide data for that FIFO. Whether 
any data can be transferred will depend on the state of the external HERON Input FIFO being 
accessed. 

When the external HERON Input FIFO contains data and the read-request is asserted, data will be 
passed to the user application on one of six data busses, INFIFO0_D to INFIFO5_D. For each clock 
cycle where one of these busses contains valid FIFO data, a corresponding ‘data-valid’ signal is asserted 
by the HE_RD_6F component. 

For example, if the user application has requested data from FIFO 2 by asserting the FIFO 2 read-
request signal INFIFO_READ_REQ(2), then when data is available it will be placed on the 
INFIFO2_D data bus and in the same clock cycle the data valid signal INFIFO_DVALID(2) will be 
asserted. 

In addition to the data transfer control signals the HE_RD_6F component provides two status signals 
per FIFO. The signals INFIFO_SINGLE and INFIFO_BURST indicate the state of the read FIFO 
interface, with the INFIFO_SINGLE flag representing whether there is at least a single word to read, 
and the INFIFO_BURST flag representing that there are multiple data elements to be read from the 
external HERON FIFOs. 

The Six HERON-FIFO Write Interface 

The HE_WR_6F component provides six write control signals that are asserted by the user application 
when transferring data to the external HERON Output FIFOs. In combination with the write control 
signals, the HE_WR_6F component provides six ‘ready’ signals that indicate whether it is possible to 
transfer to the external FIFOs or whether those FIFOs are full. 

While it is possible to transfer data to one of the external HERON Output FIFOs, the 
OUTFIFO_READY signal will be asserted for that FIFO (eg for FIFO 3 the signal 
OUTFIFO_READY(3) will be asserted). For each clock cycle where both the OUTFIFO_READY signal 
and the OUTFIFO_WRITE signal are asserted, data will be transferred to the FIFO using the 
OUTFIFO_D data bus. 

While this situation exists, data can continue to be written to the same FIFO on every clock cycle. 
When the external FIFO approaches becoming full, the OUTFIFO_READY signal will become de-
asserted. When this occurs, the user application must stop writing to the output FIFO. For the first 
clock cycle where the ‘ready’ signal first becomes de-asserted it is possible to write one more word of 
data, but after this last access, data transfer must be paused until the ‘ready’ signal returns to being 
asserted. 
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The HE_WR_6F component provides one data bus for transferring data. During any single clock 
period, only one of the six write control signals can be asserted; during that clock cycle the data bus 
must contain the data to be written to that respective FIFO. This requires that the user application 
performing any necessary data path switching necessary to place the correct data onto the OUTFIFO_D 
data bus. 

Scheduling FIFO Access 

The key difference in using the new interfaces is that it is now possible to read from six FIFOs 
concurrently and write to six FIFOs concurrently. However, for all read accesses the input data must be 
transferred using one shared HERON input bus, and similarly for all write accesses the output data 
must be transferred using one shared HERON output bus. 

The sharing of one bus for input and one bus for output requires a mechanism for controlling how the 
input and output busses are shared amongst FIFO connections. With the Six FIFO Read and Six FIFO 
Write interface components, FIFO scheduling is handled in one of two ways depending on the 
requirements of your application. The method used will depend on the data bandwidth required by 
your FPGA design. 

HERON FIFO Bandwidth 

For a HERON FIFO interface operating at 100MHz, the maximum data rate through the Input FIFO 
interface or Output FIFO interface is 400Mbytes/sec. This is because the maximum transfer rate is one 
word of data every clock cycle, where each word is comprised of four bytes. 

For the Six FIFO Write Interface one word of data can be transferred on each and every clock cycle 
while transferring data to the same FIFO. When you switch to a different output FIFO, the first word 
of data can be written to the newly selected FIFO immediately after the last word is written to the 
current output FIFO. As a result, the bandwidth available through the Six FIFO Write Interface is 
400MBytes/sec. 

For the Six FIFO Read Interface however, a different situation exists. For the read FIFO interface 
there must be one idle cycle in which no data is transferred, each time we change from one FIFO to 
the next. This means that when reading from multiple HERON FIFOs we must consider how the 
number of idle cycles will affect the available bandwidth. 

If the all of the ‘read-request’ signals are tied high (asserted) by the application, then the HE_RD_6F 
component will automatically control the sequencing of FIFO accesses. This is done as follows; for 
each FIFO that has data that can be transferred to the user application, the read interface component 
will transfer a single word of data and then switch to the next ready FIFO. If all FIFOs have data, the 
HE_RD_6F component will service FIFO 0, then FIFO 1, then FIFO 2 all the way to FIFO 5. It will 
then return to service FIFO 0. 

By behaving in this way, it is necessary that one idle cycle is performed in between one word of data 
transfer from a rotating choice of FIFO. The effect of this is that there are as many ‘idle’ cycles as there 
‘data-transfer’ cycles. This results in a halving of the maximum bandwidth to 200Mbytes/sec. 

The alternative method of bandwidth control is for the user application to decide when to access each 
FIFO. By using this method it is up to the user application to control how many words of data are read 
from each FIFO before moving onto the next ready FIFO. The change in FIFO number will insert the 
necessary idle cycle, which will be reflected by one idle cycle between a change of data valid assertions. 
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Whether a user application will tie all required read request signals high, or whether the application will 
actively control the read requests will depend on the bandwidth requirements of that application. It is a 
simple choice, made by considering the combined input FIFO bandwidth as follows. 

                    Total Bandwidth thru. All Input FIFOs         FIFO Access Method 

          ≤ 200Mbytes/second                        Tie all required read-requests high  
          > 200Mbytes/second                           Actively control read-requests  
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The Multiple FIFO Access Examples 

There are several different examples that are presented in the remainder of this document that illustrate 
the many different ways in which the Six FIFO interface components may be used. 

There are two examples provided as VHDL modules. These examples show how to control the process 
of reading from three FIFOs concurrently and write to three FIFOs concurrently. The first of these 
examples operates with the required ‘read request’ signals tied high. For this example, data is requested 
from FIFOs 0, 1 and 2 as soon as it is available. The scheduling of input FIFOs is automatically 
performed by the Six FIFO Read Interface component in the Hardware Interface Layer. 

In the second VHDL example, the ‘read request’ signals are actively controlled inside the user 
application in order to control the sharing of the input FIFO bandwidth. 

In addition to the VHDL examples, there are several other examples that present signal waveforms to 
show how the FIFO interfaces behave when used in different ways. There are four of these examples 
that discuss reading from the HERON Input FIFOs, and one example that discusses writing to the 
HERON Output FIFOs. 

Finally, in the Appendix at the end of this document there is a discussion of how to decide on an 
algorithm for actively controlling the ‘read_request’ signals. This appendix is intended to be used along 
with the second VHDL example, Example2, and with Example 5 that shows bandwidth sharing with 
signal waveforms used for illustration. 

Example 1: VHDL Example of Multiple FIFO Access with Tied Read Requests 

In the same directory of the HUNT ENGINEERING CD that contains this document there is a 
VHDL source module named ‘Example1.vhd’. The file Example1.vhd contains code that demonstrates 
reading and writing multiple HERON FIFOs. 

In this example, data is requested from Input FIFOs 0, 1, and 2. This is done by permanently asserting 
INFIFO_READ_REQ(0), INFIFO_READ_REQ(1) and INFIFO_READ_REQ(2). 

As data arrives in the external HERON Input FIFOs, the HE_RD_6F Hardware Interface Layer 
component automatically alternates between FIFOs, presenting the data on the input data busses along 
with asserting the appropriate INFIFO_DVALID(0), INFIFO_DVALID(1) and 
INFIFO_DVALID(2) data valid signals. 

The data valid signals are used as the write enables for three FIFOs internal to the user application. 
These FIFOs are simple CoreGenerator generated FIFOs. Each is 15 words deep, and 32-bits wide, 
with a full flag, empty flag, almost full flag and almost empty flag. 

On the output side of the internal FIFOs is a simple state machine that rotates from internal FIFO A 
to internal FIFO B to internal FIFO C. For each FIFO, if it is not empty and the associated HERON 
Output FIFO is ready (OUTFIFO_READY(n) asserted), data is transferred to the HERON FIFO. 

Example 2: VHDL Example of Multiple FIFO Access with Active Read Requests 

Again, in the same directory of the HUNT ENGINEERING CD that contains this document there is 
a VHDL source module named ‘Example2.vhd’. The file Example2.vhd contains code that 
demonstrates reading and writing multiple HERON FIFOs. This example differs from Example1 in 
that the input of data from FIFOs 0, 1 and 2 is dynamically controlled. 

For this example, suppose we require a bandwidth of 175Mbytes/sec for FIFO 0 data transfer, 
150Mbytes/sec for FIFO 1, and 25Mbytes/sec for FIFO2. This is achieved through a simple state 
machine that alternates the assertion of read requests in order to share the total available bandwidth. 
The calculation that was performed to work out the bandwidth sharing can be found in the appendix. 
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Example 3: Reading from Three FIFOs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the above diagram, data is requested from FIFOs 0, 1 and 2 by the assertion of all three respective 
read-request signals. With these signals held asserted, the Six FIFO Read Interface will automatically 
present the data for each FIFO as it becomes available. 

In this example, there is a lot of data to be presented from FIFO 0, some data for FIFO 1 and no data 
for FIFO 2. The interface will decide when to change from processing one FIFO to processing the 
next. 

During clock cycle 2, the interface is only able to present data from FIFO 0. The data is read from 
external FIFO 0 and output in clock cycle 3. The interface continues to output data for FIFO 0 for the 
next clock cycle, as there is still no data for FIFO 1 or FIFO2. 

If data is available for reading from two or more FIFOs at the same time, the interface will output one 
word at a time from each FIFO with one clock cycle of idle time between each data element transfer.  

In clock cycle 4 of our example, FIFO 0 still has data available, but data arrives in FIFO1. In this case 
the interface alternates between FIFO 1 and FIFO 0. Note the clock cycle between the two valid items, 
imposed by switching the access from one FIFO to another.   

As each word of data is presented on each of the data busses, the corresponding data valid signal 
(INFIFO_DVALIDn) is asserted (driven high). As such, the data valid signal can be directly connected 
to the clock enable or write enable of the next stage of data processing. 
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In this example the interface outputs INFIFO_SINGLEn and INFIFO_BURSTn are not shown. These 
signals are provided for making decisions about when to read from each of the external FIFOs. For this 
example, we want to read from each FIFO as soon as data is available, and so the read requests have 
been constantly asserted. As there is no decision making required as to when to assert a read request 
signal, the SINGLE and BURST signals are ignored. 
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Example 4: Constant Data Input from Multiple FIFOs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this example the read requests for FIFOs 0, 1, 2 and 3 are all asserted. In addition to this, the 
external FIFOs contain a large amount of data for all four FIFOs. In this situation where the interface 
is able to transfer data from several FIFOs all at the same point in time, the interface automatically 
transfers one word at a time from a FIFO and then switches to another FIFO. 

The rotation around FIFOs is based on a round-robin scheme. If all six FIFOs are ready to transfer 
data and if all six read requests are asserted, the sequence will be 0, 1, 2, 3, 4, 5, 0, 1, 2 , 3, 4, 5 and so 
on. 

As the data from the external HERON FIFOs is transferred over a shared 32-bit data bus, each FIFO 
must have a unique output enable to prevent contention. When switching from one FIFO to the next, 
there must be one idle cycle where the output enable of the first FIFO becomes de-asserted while the 
output enable of the second becomes asserted. This results in one idle cycle between the assertion of 
the data valid signals for two different FIFOs. 

For a 100MHz HERON FIFO interface, the maximum data rate is 400Mbytes/sec (100MHz x 4 
bytes). However, with one idle cycle per word as is the case for this example, the overall available 
bandwidth becomes 200Mbytes/sec. To find the bandwidth limit for each FIFO in use, this figure must 
be divided by the number of active FIFOs. 

For this example, the maximum data rate that can be sustained for each FIFO is 50Mbytes/sec 
(200Mbytes/sec divided by 4). 

When the combined date rate of all of the active FIFOs is greater than 200 Mbytes/sec, or when one 
FIFO requires a transfer rate of greater than 200/N Mbytes/sec (where N is the number of active 
FIFOs) you must use a scheme that does not continuously assert all of the read request signals. 
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In these cases you will need to actively control the assertion and de-assertion of the read request signals 
in order to control how the bus bandwidth is shared between FIFOs. The following examples show 
how this is done when using the Six FIFO Read Interface. 
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Example 5: Read Interface Bandwidth Sharing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this example there are two active FIFOs, FIFO 0 and FIFO 1.  The required data rate for FIFO 0 is 
200Mbytes/sec and the required data rate for FIFO 1 is 50Mbytes/sec. 

The read request signals for FIFOs 2 to 5 are de-asserted (driven low). The data rate through external 
FIFOs 0 and 1 is high enough to keep data constantly available for reading. 

If we were to tie the read request signals high (asserted) for both FIFOs, this would result in one word 
transferred alternately from each FIFO, with one idle cycle in-between each word of data. For a 
100MHz HERON FIFO connection, this would automatically reduce the maximum data rate from 
400Mbytes/sec to 200Mbytes/sec to account for the idle cycle. This would result in a data rate of 
100Mbytes/sec for FIFO 0 and 100Mbytes/sec for FIFO 1. For this example the data rate for FIFO 1 
can be met with 50Mbytes/sec to spare, but the data rate for FIFO 0 cannot be met. 

By asserting the read request for FIFO 0 longer than the read request for FIFO 1 the bandwidth can be 
split such that FIFO 0 is favoured over FIFO 1. In this example, the signal INFIFO_READ_REQ0 is 
asserted for 3 consecutive clock cycles and the signal INFIFO_READ_REQ1 is only asserted for one 
cycle. This creates a pattern that is repeated every six clock cycles as shown above. 

The resulting bandwidth for each FIFO is now calculated as follows. For FIFO 0, 3 words are read in 
each 6-clock cycles. This gives a data rate of 3/6 * 400Mbytes/sec, or 200Mbytes/sec. This meets the 
required bandwidth for FIFO 0. For FIFO 1, 1 word is read every 6-clock cycles, giving a data rate of 
1/6 * 400, or 66Mbytes/sec. This exceeds the bandwidth required for FIFO 1 of 50Mbytes/sec. 

To reach a total bandwidth of close to the 400Mbytes/sec maximum, the sizes of the blocks taken from 
each FIFO will need to be made larger. This has the effect of reducing the number of idle cycles per 
active cycle. 

For example if we change our choices above to use 6 words from FIFO0 then 2 words from FIFO1, 
we can see the resulting bandwidths become 6/10*400 = 240Mbytes/sec and 2/10*400 = 
80Mbytes/sec.  
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Example 6: Read Interface Signal Timing 

 

 

 

 

 

 

 

 

 

 

 

 

 

This example demonstrates the signal timing for the read interface. At the start of the diagram the 
signals INFIFO_SINGLEn and INFIFO_BURSTn are both asserted. This indicates that there is enough 
data to provide a constant stream on the bus INFIFOn_D. 

The data path from the external FIFO to the data bus INFIFOn_D contains a pipeline. This pipeline 
can contain up to two words of data in addition to the data in the external FIFO. When the read 
request signal INFIFO_READ_REQn is first asserted, the data that is presented may come from the 
two-word buffer internal to the HE_RD_6F interface, or it may come directly from the external FIFO. 

If there is data already in the pipeline, then as the read request is asserted in clock cycle 1, data becomes 
presented along with the assertion of INFIFO_DVALIDn in clock cycles 2 and 3. If the pipeline is 
empty however, the first data is data read from the external FIFO and this data is presented from clock 
cycle 4 onwards. 

While the signal INFIFO_BURSTn is asserted data can be output by the read interface on consecutive 
clock cycles, as long as the INFIFO_READ_REQn signal remains asserted. When the burst signal first 
becomes de-asserted data will continue to be output for the next three clock cycles as shown in cycles 4 
to 6. 

While the burst signal remains de-asserted and the single-word available signal, INFIFO_SINGLEn, is 
asserted, one word of data will be output every 4 clock cycles (assuming no activity on any other 
FIFO). 

The data valid signal follows the read request signal by one clock cycle, according to whether data is 
available either in the two-word internal buffer or the external FIFO. That is, from the first assertion of 
INFIFO_READ_REQn, the first assertion of INFIFO_DVALIDn will be no earlier than one clock cycle 
later. Also, from the de-assertion of INFIFO_READ_REQn, INFIFO_DVALIDn can only stay asserted 
for one more cycle. 
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Example 7: Writing to Three FIFOs  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the above diagram, data is being written to FIFOs 0, 1 and 2. Data can only be written to each FIFO 
when the respective ready signal is asserted (driven high). Data can only be written to one FIFO at a 
time, although data transfer can switch immediately from one FIFO to the next without needing any 
time for idle cycles. 

The interface provides one 32-bit input for the data to be written to each FIFO. This data bus must be 
correctly driven on each clock cycle where any one of the write signals is asserted (driven high). 

In the diagram, two words of data are consecutively written to FIFO 0, immediately followed by one 
word written to FIFO 1. Following the write to FIFO 1, the ready signal becomes de-asserted for that 
FIFO. When the ready signal is de-asserted only one more word can be written. In this example, data 
output for FIFO 1 stops until the ready signal is re-asserted in clock cycle 11. 

Later on, writing data to FIFO 2 results in the OUTFIFO_READY2 signal becoming de-asserted in clock 
cycle 10. When this happens one more word is written and then data output to FIFO 2 is stopped. 
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Appendix: Active Read Request Algorithms  

When dynamically asserting Input FIFO ‘read request’ signals to share Input FIFO bandwidth, it is up 
to the user application to implement a scheme that meets the needs of that particular design. The 
scheme that you decide on when doing this is entirely up to you. However, what is presented here is a 
simple way of implementing a fair scheme that correctly shares the bandwidth according to the 
requirements of each Input FIFO connection. 

Remember valid data is only transferred in cycles where the relevant INFIFO_DVALID signal is 
asserted. The scheme we show below controls the read request signals in a manner that will allow the 
bandwidths we require. The actual flow of data will be controlled by the availability of data in the 
FIFOs. 

Calculation Example A 

Let us assume we want to share the 400Mbytes/sec Input FIFO bandwidth amongst three FIFOs as 
follows: 

  FIFO 0 => 175 Mbytes/sec 

  FIFO 1 => 150 Mbytes/sec 

  FIFO 2 => 25 Mbytes/sec 

 

Step i. First calculate the total bandwidth requirement. 

  Bt = 175 + 150 + 25 = 350 Mbytes/sec 

Check that it is less than 400 Mbytes/sec and greater than 200Mbytes/sec. If our total 
bandwidth requirement is greater than 400 Mbytes/sec, we cannot proceed as we are exceeding 
what the total available bandwidth. If the total is less than 200Mbytes/sec then there is no need 
to dynamically assert the FIFO read request signals. In this case, simple tie all required read 
request signals high. 

Step ii. Calculate the number of idle cycles for one loop of all FIFOs, and the maximum amount of 
            idle time that we can allow. 

  Ci = Number of FIFOs = 3 

  Ti = Total Available Bandwidth – Bt = 400 – 350 = 50 Mbytes/sec.  

Step iii. Calculate the minimum number of cycles, including data transfer cycles and idle cycles we 
             require for one loop of all FIFOs. 

  Cmin   ≥     No. of Idle Cycles (Ci)  *  Total Available Bandwidth 
                                             ------------------------------------------------------------------- 
                 maximum allowed idle time 
 

  Cmin   ≥     (3  * 400)  / 50 
  Cmin   ≥     24 
 
Step iv. Weight each FIFO, relative to the smallest requirement (in this case, 25 Mbytes/sec). 

 
  Smallest requirement -> FIFO 2 -> 25 Mbytes/sec. 
  FIFO 0 requirement  -> 7 * FIFO 2. 



 

14 

  FIFO 1 requirement  -> 6 * FIFO 2. 
 
  Therefore W0 = 7, W1 = 6, W2 = 1. 

Step v. Perform iterations of ‘N’ to calculate how many cycles to allocate to each FIFO. This is done 
            by multiplying N against the ‘weight’ of each FIFO, and adding the number of idle cycles that 
            are required. This total must be greater than or equal to the figure that was calculated for 
            Cmin. 
 
  Iteration 0 : N=1 Ct = (N x W0) + (N x W1) + (N x W2) + Ci 
    Ct = (1 x 7) + (1 x 6) + (1 x 1) + 3 
    Ct = 17 cycles. 
 

  !! In this case, our total is less than Cmin. Therefore we must increase N by one, and 
  try again. 
 
  Iteration 1 : N=2 Ct = (2 x 7) + (2 x 6) + (2 x 1) + 3 
    Ct = 14 + 12 + 2 + 3 
    Ct = 31 cycles. 
 
  In this case, Ct ≥ Cmin, which is what we need. Therefore we now know how many 
  cycles to allocate each FIFO as follows: 
 

  FIFO 0 Transfers data for 14 consecutive cycles 

  IDLE 1 idle cycle performed to change from FIFO 0 to FIFO 1. 

  FIFO 1 Transfers data for 12 consecutive cycles 

  IDLE 1 idle cycle performed to change from FIFO 1 to FIFO 2. 

  FIFO 2 Transfers data for 2 consecutive cycles 

  IDLE 1 idle cycle performed to change from FIFO 2 to back to FIFO 0. 

   

Step v. We can check the FIFO allocation we have obtained by calculating the bandwidth each FIFO 
             will have, as follows. 

  We will loop around all FIFOs every 31 cycles. 

  For FIFO 0, we will transfer 14 words, every 31 cycles. 

  Therefore FIFO 0 bandwidth is (14/31) * 400 = 180.65 Mbytes/sec. 

  This is greater than our requirement of 175 Mbytes/sec, so this has been satisfied. ! 

  For FIFO 1, we will transfer 12 words, every 31 cycles. 

  Therefore FIFO 1 bandwidth is (12/31) * 400 = 154.84 Mbytes/sec. 

  This is greater than our requirement of 150 Mbytes/sec, so this has been satisfied. ! 

  For FIFO 2, we will transfer 2 words, every 31 cycles. 

  Therefore FIFO 2 bandwidth is (2/31) * 400 = 25.81 Mbytes/sec. 
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  This is greater than our requirement of 25 Mbytes/sec, so this has been satisfied.! 
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