

HUNT ENGINEERING
Chestnut Court, Burton Row,

Brent Knoll, Somerset, TA9 4BP, UK
Tel: (+44) (0)1278 760188,
Fax: (+44) (0)1278 760199,

Email: sales@hunteng.demon.co.uk
http://www.hunteng.co.uk
http://www.hunt-dsp.com

HUNT ENGINEERING

HEL_ILib

USER MANUAL
An optimised xDAIS-compliant image processing library for HERON-based DSP
boards. HEL_ILib is intended for use with the TMS320C6000 based processor
modules (eg HERON1-C6701, HERON3-C6211) and supports both cache and non-
cache versions of the processor.

The first release of the library is for image processing on integer images – no floating
point support is provided at this stage. Later versions will include additional
functionality.

By providing feedback to Hunt Engineering, users can influence the functionality
that will be added

Document Rev C
R. Weir 22/2/2001

2 HUNT ENGINEERING HEL_ILib USER MANUAL

COPYRIGHT
This documentation and the product it is supplied with are Copyright HUNT
ENGINEERING 1999. All rights reserved. HUNT ENGINEERING maintains a policy
of continual product development and hence reserves the right to change product
specification without prior warning.

WARRANTIES LIABILITY and INDEMNITIES
HUNT ENGINEERING warrants the hardware to be free from defects in the material
and workmanship for 12 months from the date of purchase. Product returned under the
terms of the warranty must be returned carriage paid to the main offices of HUNT
ENGINEERING situated at BRENT KNOLL Somerset UK, the product will be repaired
or replaced at the discretion of HUNT ENGINEERING.

Exclusions - If HUNT ENGINEERING decides that there is any evidence of
electrical or mechanical abuse to the hardware, then the customer shall have no
recourse to HUNT ENGINEERING or its agents. In such circumstances HUNT
ENGINEERING may at its discretion offer to repair the hardware and charge for
that repair.

Limitations of Liability - HUNT ENGINEERING makes no warranty as to the
fitness of the product for any particular purpose. In no event shall HUNT
ENGINEERING’S liability related to the product exceed the purchase fee actually
paid by you for the product. Neither HUNT ENGINEERING nor its suppliers
shall in any event be liable for any indirect, consequential or financial damages
caused by the delivery, use or performance of this product.

Because some states do not allow the exclusion or limitation of incidental or consequential
damages or limitation on how long an implied warranty lasts, the above limitations may not
apply to you.

TECHNICAL SUPPORT
Technical support for HUNT ENGINEERING products should first be obtained from the
comprehensive Support section www.hunteng.co.uk/support/index.htm on the HUNT
ENGINEERING web site. This includes FAQs, latest product, software and
documentation updates etc. Or contact your local supplier - if you are unsure of details
please refer to www.hunteng.co.uk for the list of current re-sellers.

HUNT ENGINEERING technical support can be contacted by emailing
support@hunteng.demon.co.uk, calling the direct support telephone number +44 (0)1278
760775, or by calling the general number +44 (0)1278 760188 and choosing the technical
support option.

N.B. Technical support for this Library (HEL_Ilib) will be provided for users of
HUNT ENGINEERING hardware ONLY.

http://www.hunteng.co.uk/support/support.htm
www.hunteng.co.uk

3 HUNT ENGINEERING HEL_ILib USER MANUAL

TABLE OF CONTENTS
INTRODUCTION.. 5

LIBRARY OVERVIEW.. 6

LIBRARY ARCHITECTURE.. 7
FUNCTION CLASSES... 7
FUNCTION NAMING CONVENTIONS ... 7
DATA FORMATS .. 7
HEADER FILES... 8

INTERRUPT CONSIDERATIONS... 9

REGION OF INTEREST SUPPORT .. 10

TILING SYSTEM & MEMORY MANAGEMENT .. 11
INTRODUCTION.. 11
IMAGE TILING.. 12
HOW TILING IS IMPLEMENTED ... 13

Overview.. 13
Using Tiling ... 13

LIBRARY LIMITATIONS... 15
MAXIMUM IMAGE SIZE.. 15
IMAGE ALIGNMENT & GRANULARITY ... 15

THE HEL_IMAGEOBJ STRUCTURE .. 16
INTRODUCTION.. 16
CREATING THE HEL_IMAGEOBJ STRUCTURE ... 16
CREATING REGIONS OF INTEREST (ROI) ... 16

EXAMPLE.. 17
STANDARD EXAMPLE .. 17

FUNCTION LIST .. 18
Image Management ... 18
Arithmetic Operators ... 18
Logical Operators.. 19
Filtering Functions .. 19

FUNCTION DESCRIPTIONS ... 20
OVERVIEW .. 20
IMAGE MANAGEMENT FUNCTIONS.. 21

HEL_ImageCreate... 21
HEL_ROICreate .. 22
HEL_TileCreate... 23
HEL_ImageCONVERT.. 24
HEL_ImageCOPY ... 25
HEL_ImageSCALE.. 26

ARITHMETIC OPERATORS .. 27
HEL_ImageABS... 27
HEL_ImageADD ... 27
HEL_ImageADDK... 28
HEL_ImageMPY.. 28
HEL_ImageMPYK ... 29
HEL_ImageMPYKSCALE ... 29
HEL_ImageMPYSCALE.. 30

4 HUNT ENGINEERING HEL_ILib USER MANUAL

HEL_ImageSQR .. 30
HEL_ImageSUB .. 31
HEL_ImageSUBK.. 31

LOGICAL OPERATORS.. 32
HEL_ImageAND.. 32
HEL_ImageANDK ... 32
HEL_ImageSHLK.. 33
HEL_ImageSHRK.. 33
HEL_ImageNOT.. 34
HEL_ImageOR .. 34
HEL_ImageORK.. 35
HEL_ImageXOR.. 35
HEL_ImageXORK ... 36
HEL_ImageFILLK... 36
HEL_ImageFILLRAMP... 37

FILTERING FUNCTIONS .. 38
HEL_ImageCONV ... 38
Standard Filter Configurations ... 39
Modifying the standard configurations ... 40

PERFORMANCE .. 41

EXAMPLES.. 44
Introduction ... 44

USING THE EXAMPLES... 44
USING THE EXAMPLES WITHOUT THE “CREATE NEW PROJECT” TOOL ... 45
EXAMPLE 1 – CREATING & LOADING IMAGES... 46
EXAMPLE 2 – REGION OF INTEREST PROCESSING AND COPYING IMAGES.. 47
EXAMPLE 3 – CONVOLUTION .. 49

DOCUMENT HISTORY .. 51

TECHNICAL SUPPORT.. 52

5 HUNT ENGINEERING HEL_ILib USER MANUAL

Introduction

HE_ILib is a library of image processing functions intended to make the task of building
imaging systems quicker and easier. It is designed to be extendible; source code is available
to users of Hunt Engineering boards, allowing functions to be modified if necessary.

The functions provided are heavily optimised. In most cases the functions are written in
hand-coded assembler, but where this would provide no performance benefit, they are in
optimised C.

The library is intended for use within the ExpressDSP environment. It is fully XDAIS Level
1 compliant.

No memory allocation is performed within the library. Similarly, no I/O functions are
implemented – it is assumed that these are implemented by the hosting framework, such as
HERON-API.

6 HUNT ENGINEERING HEL_ILib USER MANUAL

Library Overview

HEL_ILib is ideal for image processing applications, providing optimised functions for
many common operations in imaging. It is an extendible library, and is designed for ease of
use.

The user interface to the library is at a high level. Images are described by C-level structures,
containing information about the image – size, resolution and address. It is these structures
that are passed to the library’s functions; the library will automatically run the optimal code
for that image.

The library supports image tiling and Region of Interest. In many cases, these two
approaches to splitting an image into fragments allows the processing to be performed on-
chip, greatly enhancing performance.

Whether used at frame-level or tile-level, the library internally calls hand-optimised assembly
routines to perform the image processing. These functions are not accessible to the user.

7 HUNT ENGINEERING HEL_ILib USER MANUAL

Library Architecture

Function Classes

All functions are non-destructive, allowing source and destination images to be specified
separately. Most can be used in-place (i.e. the destination image is the same as the source).
Where this is not the case, a note is made in the documentation.

There are two classes of function in the library:

• MONADIC functions take a single input image to create a single output. They typically
apply a constant operator to the image – for example, “AND with constant”.

• DIADIC functions take two input images to create a single output – for example,
“ADD two images”.

Functions may use one or more constants in their operation. For example, a monadic
operator might “AND image with constant”. In this case, the constant is supplied as a
parameter to the function.

Function Naming Conventions

Function names are built up from a prefix, logical function name and suffix. For the
imaging functions, the prefix is always “HEL_Image”.

Functions using a constant have a “K” as the suffix, immediately after the operator name.

Hence, the AND function would be named:

HEL_ImageAND AND two images to a third. Performs resolution detection
automatically from the image buffer passed to it. Data is not
moved before processing.

HEL_ImageANDK AND image with a constant. As the AND function, but the
second image is replaced by a constant operator passed in the
function’s parameters.

Data Formats

This release of the library supports three integer data formats:

• 8-bit unsigned integer

• 16-bit signed integer

• 32-bit signed integer

Every operation performs saturation appropriate for each data type. Functions exist to
convert images from one type to another.

Not all operations support all pixel depths. Where an operator is called for an unsupported
image type, it will return an error code. The documentation notes the image resolutions &
pixel depths supported by each operator.

8 HUNT ENGINEERING HEL_ILib USER MANUAL

Header Files

The library needs HEL_ImgLib.h included in each C source file. This includes the
structure and function definitions required.

9 HUNT ENGINEERING HEL_ILib USER MANUAL

Interrupt Considerations

The C6000 processor’s “branch” instruction takes 5 cycles to execute. As the processor can
issue 8 cycles per clock, a branch can be accompanied by up to 39 instructions doing other
useful work.

During the five cycles of a branch, the C6000 ignores interrupts. In many image processing
operations, this could mean that interrupts are disabled for the entire duration of an
operation – perhaps several milliseconds. This prevents the processor from switching to
higher priority tasks, responding to external events, or servicing real-world requests. For
many systems this is unacceptable.

This library has been coded to ensure that all loops take a minimum of 6 cycles. By taking
this approach we can guarantee that the processor is always interruptible.

To ensure efficient operation, each loop processes multiple pixels so that all 6 cycles are
utilised for useful work. Typically this means that up to 32 bytes are processed per loop.

Processing 32 bytes at a time means that the image lines have to be a multiple of 32 bytes
long. This is not generally restrictive. Most common image sizes already meet these criteria.
Others can be padded to make the line length a multiple of 32 bytes.

10 HUNT ENGINEERING HEL_ILib USER MANUAL

Region of Interest Support

Many applications of image processing use images which are non-contiguous in memory.
This can be a result of many things:

Frame buffer architecture. It is common for frame buffers to align all lines of an
image to a memory page, so the address increment from the first pixel of the first
line to the first pixel of the second line may well be larger than the line length.

Region of Interest Selection. Here, an area of the image is identified for further
processing. Typically, the processing is coplex – processing the whole image would
be a waste of time, so we select a small “patch” or “region” to analyse.

In each case, copying the image to make the pixels contiguous in memory is wasteful of
resources. The library implements ROI support to ensure this is never required.

This is done through the “stride” of the image. When defining an image, we set three
parameters:

x (image width)

y (image height)

stride (line-line address increment)

These are shown below:

When creating an image, specify the stride as being the same as X for contiguous memory,
or greater than X for a Region of Interest.

The Image Copy routines will perform two types of copy:

• Source and destination have the same stride. In this case, both images can be non-
contiguous.

• Images where one image is contiguous.

Note that the copy routine does not support copying images where the source and
destination are non-contiguous with different strides. Do this through an intermediate
buffer.

Image Buffer

Image

Image Stride

Image X

Image Y

11 HUNT ENGINEERING HEL_ILib USER MANUAL

Tiling System & Memory Management

Introduction

The library processes images held in buffers. Typically these buffers are large – a standard
8-bit image at 512x512 resolution requires 256Kbytes, while a 1K*1K RGB image would
require 4Mbytes.

For small images, it may be possible to hold these images in on-chip RAM. However, it is
far more common for the image to be stored in external memory – typically SDRAM.

Off-chip memory is usually very slow in comparison with on-chip. The table below gives
some representative times, taken on the TMS320C6201 processor:

Operation Transfer Rate
CPU Read from on-chip RAM 0.125 cycles/byte

DMA Read from SDRAM (burst rate) 0.5 cycles/byte

CPU Read from SDRAM 4 cycles/byte

As can be seen, there are huge penalties in processing the off-chip images directly. Another
point is that for many simple operations, the CPU can process images far faster than
external memory can provide them:

Operation Transfer Rate
AND image with constant 8-bit: 4 pixels / cycle

16-bit: 2 pixels / cycle
32-bit: 1 pixels / cycle

Internal memory read / write cycle 8-bit: 4 pixels / cycle
16-bit: 2 pixels / cycle
32-bit: 1 pixels / cycle

External SDRAM CPU read/write 8-bit: 0.25 pixels / cycle
16-bit: 0.125 pixels / cycle
32-bit: 0.0625 pixels / cycle

Plainly simple operations can be performed very quickly, but if the processor is accessing
the image in external memory, a bottleneck is created.

12 HUNT ENGINEERING HEL_ILib USER MANUAL

Image Tiling

To overcome this, HEL_ILib offers the “Tiled” mode of operation. To achieve this, the
image is split into tiles. Each tile is loaded into on-chip memory or the cache. The CPU
then performs MULTIPLE operations on that tile, before saving it back and proceeding
with the next tile.

To understand this fully, consider the following example processing pipeline. This is purely
an example – it is not meant to be part of a real application. Image is 1K*1K*8 bits, stored
in external SDRAM:

1. NOT Every pixel in the image is “inverted” using the NOT function

2. OR 0x80 Top bit of every pixel is set

3. AND 0xfe And the last bit of every pixel is cleared…

Implementing this sequence directly:

Operation Description Actions Time
NOT Load 1K*1K pixels, invert

all bits, store back to
SDRAM

Read: 1K*1K*16 cycles
Write: 1K*1K*16 cycles
CPU: Insignificant

32M

OR Load 1K*1K pixels, OR
with 0x80, store back to
SDRAM

Read: 1K*1K*16 cycles
Write: 1K*1K*16 cycles
CPU: Insignificant

32M

AND Load 1K*1K pixels, AND
with 0xfe, store back to
SDRAM

Read: 1K*1K*16 cycles
Write: 1K*1K*16 cycles
CPU: Insignificant

32M

Total 96M cycles

In contrast, the tiled approach splits the image into perhaps 100 tiles. In this case, we
would repeat the following code 100 times:

Operation Description Actions Time
Load Tile N Load 1K*1K/100 pixels

using DMA
Read: 1K*1K*2 / 100 cycles 20K

NOT Tile invert all bits CPU: (1K*1K/100) / 4 cycles 2.5K

OR Tile OR tile with 0x80 CPU: (1K*1K/100) / 4 cycles 2.5K

AND Tile AND tile with 0xfe CPU: (1K*1K/100) / 4 cycles 2.5K

Save Tile N Save 1K*1K/100 pixels
using DMA

Write: 1K*1K*2 / 100 cycles 20K

Total
(for Tile)

 47.5K
cycles

Total
(for Image)

 4.75M
cycles

So, the tile approach is over an order of magnitude faster. Further savings are gained by
overlapping the load and store of the images with the processing, using the DMA. In this

13 HUNT ENGINEERING HEL_ILib USER MANUAL

case, the load/store take 40K cycles – the processing would almost disappear.

Using the tiled approach gives a performance improvement of approximately 20x. Other
benchmarks will give different results, but tiling will almost always be faster than the direct
approach.

How Tiling is implemented

Overview
In HEL_DSPLib a 1-dimensional tiling system is used. This is the simplest possible form
of tiling; 2-dimensional tiling would introduce overhead in processing and is unnecessary
for most applications.

The image is divided into horizontal “bands”, running across the image. Each band
contains one or more “lines” of the image. A tile always contains an integer number of
lines. The size of the tile is determined when the image buffer is created.

While the tiling system was originally conceived for non-cache processors, it is also
extremely effective with the cache-based devices. In this case, the tiling system is used to
reduce the frequency of L2 misses.

In the Version 1.0 library tiling must be implemented manually, using the DMA and ROI
routines to copy data to and from the on-chip memories.

Using Tiling
In V1.0 of the library, tiling is implemented through the ROI system. Tiles are loaded from
main memory as if they were “Regions of Interest”, processed, and returned to external
memory.

Data dependency of Tiles
We must divide the image logically into Tiles, where each tile can be processed
independently of all others. There must be no data dependency between one tile and any
other; for this reason, many algorithms will use a source tile that is larger than the image
area being processed.

For example, to filter 25 lines of an image with a 3x3 convolution, we would load a tile of
27 lines – the extra line before and after the image allows the filter kernel to process out to
the borders of the image. Loading this border is an overhead of the tiling approach; and
generally, the fewer tiles there are, the lower the overhead.

Note that when we save the filtered data back to memory, we will save 25 lines – so in this
case the ROI used to load the tile is different to that used to save it.

Dividing the Image Into Tiles
To decide how large the tiles can be, start by determining the largest overlap your algorithm
requires. Because we operate 1D tiling, you only need to worry about lines. Many
functions require no overlap – for example, per-pixel functions. Others will require several
extra lines of data – for example, a convolution will always require extra lines. You can get
the overlap figures from the function list in this manual. If no overlap is quoted, none is
required.

14 HUNT ENGINEERING HEL_ILib USER MANUAL

Now, determine the pixel resolution you will process the image at, and the line length of the
image. This will tell you how many bytes of on-chip memory an image line will require.

Finally, consider how the dataflow will work in your algorithm. In many cases, we would
use four buffers:

DMA_In Buffer to load tiles into

Process_1 Buffer to process image in

Process_2 Buffer to place results in

DMA_Out Storage buffer

In a situation like this, we would use the DMA to load the DMA_In buffer with image data.
When ready, we would convert that buffer to the on-chip format – perhaps converting 8-bit
pixels to 16-bit – and place the result in the Process_1 buffer.

The image tile, now at 16-bit resolution, is processed. Typically, each processing step takes
the image from one processing buffer to the other. However, it may be possible to use a
single buffer with some algorithms; or it may be that the algorithm requires two buffers, as
in the case of convolution – in which case Process_2 would be used.

In either case, we would take the output buffer and convert it back to DMA_Out. Note
that we do not need to convert the overlap – and we MUST NOT store the overlap pixels
into the results image.

15 HUNT ENGINEERING HEL_ILib USER MANUAL

Library Limitations

Maximum Image Size

The library supports a maximum resolution of 64Kbytes (X-dimension) by 64K pixels (Y-
dimension).

Where tiling is used, the maximum tile size is dictated by the amount of on-chip memory
available to place the tile in. More complex functions require several lines of the image to be
present in the tile – for example, a 9x9 convolution requires at least 9 lines. Thus, the limit
for tiling is set by the amount of on-chip memory.

Image Alignment & Granularity

The library uses highly-optimised C and assembler code for performance. To achieve this,
some trade-offs have been made; for example, many routines process several pixels at a
time. Examples of this are the logical operators, which can often operate on 4 8-bit pixels
using a single processor instruction.

This limits the minimum line length of the image; it also affects the granularity of the line
length. There are some restrictions on the line lengths and image alignments as a result.

• Images must be aligned on a 64-bit boundary. The library makes use of known data
alignment to optimise memory accesses, resulting in a very low rate of memory
collisions. Violating this will invalidate all the timing information given in this
document.

• Images must have a multiple of 32 bytes per line, regardless of pixel depth. If the image
is not a multiple of 32 bytes, operation is undefined.

• The minimum line length is 64 bytes, regardless of pixel depth. If this restriction is not
met, operation is undefined.

While the restrictions sound severe, all common image sizes are supported. The restrictions
were introduced to increase performance with no loss of flexibility in use.

16 HUNT ENGINEERING HEL_ILib USER MANUAL

The HEL_ImageObj Structure

Introduction

The library operates on images. To simplify the use of the library, all details of an image are
stored in the HEL_ImageObj structure. To apply an operator to an image, we pass the
HEL_ImageObj structure.

As an example, consider the following library call:
 HEL_ImageObj Image;

 ….

 HEL_ImageFILLK(&Image,0x0000);

HEL_ImageFILLK is used to fill an image with a constant value. In this case, we’ve passed
the address “&Image“ as the full description of the image to be filled. Apart from this, the
only other information required is the constant for the fill operation.

Creating the HEL_ImageObj Structure

The HEL_ImageCreate function initialises the structure. This is passed all the parameters of
an image. It does not allocate memory for the structure, nor does it allocate memory for the
image.

There is no explicit need to destroy the structure. It is up to the controlling program to
allocate the memory, and when the structure is no longer required, it can de-allocate the
memory.

Creating Regions of Interest (ROI)

The library supports ROI operations directly. Regions of Interest are described by
HEL_ImageObj structures; these can be initialised by a call to HEL_CreateROI.

This function takes coefficients of the part of the image to be processed, plus pointers to
two HEL_ImageObj structures – one for the image of interest, the other for an empty
HEL_ImageObj structure which will be initialised.

As with HEL_CreateImage there is no need to specifically destroy the ROI when finished
with it; the controlling program may de-allocate the memory as required.

17 HUNT ENGINEERING HEL_ILib USER MANUAL

Example

The essence of using the library in standard mode can be seen from this example. Here, we
capture an image, AND with a constant, filter it, subtract a constant and save the result to
memory. In the first example, this is performed using the standard library; in the second,
tiling is used to enhance performance.

RASW Note – this is just pseudo code to show concepts – later it’ll be real!

Standard Example

/* set up an image handle */
HELImageObj OurImage;

/* Initialise HELImageObj structure. This sets it up for an image of
640*480, in a buffer with 1k long lines */
/* Pixel depth (resolution) is 8-bits, while the format is Mono (Grey
Scale) */
Image1 =
HEL_ImageCreateImage(&OurImage,&buffer,640,480,1024,8,HEL_MonoImage);

/* create an endless loop capturing & processing images */
for(;;)
{
/* capture image. This is beyond the scope of the library */
….
/* And image with constant, result overwrites original */
HEL_ImageANDK(OurImage,OurImage,0x7f);

/* OR image with constant, result overwrites input */
HEL_ImageORK(Image2,0x80, Image2);

/* Display image – again beyond the scope of this library */
….
}

18 HUNT ENGINEERING HEL_ILib USER MANUAL

Function List

Image Management
ImageCreate Create an image object

ImageConvert Convert image from one pixel depth to
another

ImageCopy Copy an image using a DMA

CreateROI Create an ROI object from an existing
image.

CreateTile Not implemented in this
release

ScaleImage Scale image from one resolution to
another

Not implemented in this
release

Arithmetic Operators
ABS Absolute value of image

ADD Add two images

MPY Multiply two images

MPYK Multiply image by constant

MPYKSCALE Multiply image by constant, shift result

MPYSCALE Multiply two images and shift result

SQUARE Square the pixels in an image

SUB Subtract one image from another

SUBK Subtract a constant from the image

19 HUNT ENGINEERING HEL_ILib USER MANUAL

Logical Operators
AND Bitwise AND two images

ANDK Bitwise AND image with constant

SHLK Left-shift image

SHRK Right-shift image

NOT Bitwise NOT of image

OR Bitwise OR two images

ORK Bitwise OR image with constant

XOR Bitwise XOR two images

XORK Bitwise XOR image with constant

FILLK Fill image with constant

FILLRAMP Fill image with ramp Not optimised in this
release

Filtering Functions

CONV Performs N*M convolution

MEDIAN Performs median filtering Not implemented in
this release

MAX Performs maximum filtering Not implemented in this
release

MIN Performs minimum filtering Not implemented in this
release

20 HUNT ENGINEERING HEL_ILib USER MANUAL

Function Descriptions

Overview

Following is a description of each function, with any special requirements. The following
notes are applicable to the whole library:

Special Requirements:
Images must meet the size constraints outlined earlier. If there are any further special
requirements these are outlined in the notes section for each function.

Implementation Notes:
For each function, code is implemented as an unrolled loop, processing 8 32-bit words per
pass. This is independent of pixel depth, so could be 32 pixels (8-bit) 16 pixels (16-bit) or 8
pixels (32-bit). This ensures that loops are interruptible.

The loop is guaranteed to execute at least twice.

Data Checking:
All functions perform saturation arithmetic unless otherwise specified.

Bank Conflicts:
All code is written to eliminate bank conflicts.

Endian:
All code is little-endian.

Interrupts:
All code is fully interruptible (and interrupt tolerant). Maximum latency ~6 cycles.

21 HUNT ENGINEERING HEL_ILib USER MANUAL

Image Management Functions

HEL_ImageCreate
HEL_ImageObj *HEL_ImageCreate (HEL_ImageObj *Image,

int *Memory, short x, short y,
short stride, short res, short format);

Parameters: ImageObj: Image object to be initialised.

 Memory: Array of ints used to store the image.

 X: X-dimension of the image, in pixels.

 Y: Y-dimension of the image, in pixels.

 Stride: Size of the image buffer in pixels.
Note that this might be larger than
the image – for example, image
buffers from the HEGD6 always
have an additional 4-byte boundary
at the end of each line.

 Res: Pixel depth of the image. This can be
8, 16 or 32, indicating 8/16/32-bit
pixels.

 Format: Indicates the format of the pixel.
Currently only HEL_MonoImage
supported (single pixel plane,
integer).

Return: Pointer to object on success,
HEL_ERR otherwise

Description:

HEL_CreateImage initialises an image object. It allocates no
memory, and must be passed pointers to:

a) The image object

b) The image array

Other parameters passed set the size, pixel depth and stride of the
image. Note that the image must meet the requirements for image
size specified elsewhere.

The image structure can be manipulated directly; however this
function provides easy access to it.

22 HUNT ENGINEERING HEL_ILib USER MANUAL

HEL_ROICreate
HEL_ImageObj *HEL_ROICreate (HEL_ImageObj *Image,

HEL_ImageObj *ROI,
short x,
short y,
short line_length,
short lines);

Parameters: Image: Image from which we will create

ROI.

 ROI: Image object to be initialised with
ROI

 X: X-coefficient of start of ROI, in
pixels.

 Y: Y-coefficient of start of ROI, in
pixels.

 line_length X-dimension of ROI, in pixels

 lines: Y-dimension of the ROI, in pixels.

Return: Pointer to object on success, HEL_ERR otherwise

Description:
HEL_ROICreate creates an ROI object. It is passed a source image, an empty
image object, and parameters for creating the ROI.

The ROI is created by setting up pointers to the ROI. No memory is copied or
allocated. This is an efficient way of handling ROI processing.

Note that the ROI must meet the requirements for image size specified elsewhere.
These specify the alignment of the image, and restrictions on the number of pixels
in a line.

The image structure used is identical to that for an image. ROIs are then processed
in exactly the same way as images.

As no memory is allocated it is not necessary to explicitly destroy the ROI; the
image object can be de-allocated or re-used as required.

23 HUNT ENGINEERING HEL_ILib USER MANUAL

HEL_TileCreate
Not implemented in this release
The HEL_TileCreate initialises the control object for the tiling system. It will be
implemented in a forthcoming release.

24 HUNT ENGINEERING HEL_ILib USER MANUAL

HEL_ImageCONVERT
HEL_ImageObj *HEL_ImageConvert (HEL_ImageObj *InImage,

HEL_ImageObj *OutImage);

Parameters: InImage: Source Image object

 OutImage: Destination Image object.

Return: Pointer to object on success, HEL_ERR otherwise

Description:

HEL_ConvertImage takes an image and converts it to a different pixel
depth. The conversion performed is controlled by the two image objects
passed.

As an example, if InImage describes an 8-bit image and OutImage
describes a 16-bit image, the function will copy the image from one to
the other, converting the 8-bit source pixels to 16-bit.

When the pixel depth is increased, no checking of pixels is required.
Pixels are placed in the low-order part of the output pixel. Sign extension
is performed.

When reducing the pixel depth, no saturation is performed. Note that the
32-bit and 16-bit formats are signed, while the 8-bit format is unsigned

The only parameter read from the OutImage structure is the required
pixel depth. All other parameters are written with the parameters of the
converted image.

Notes:

The Convert function cannot operate in-place when the output pixels are
larger than the input pixels. In this case, InImage and OutImage must not
be the same.

Where Convert is called to convert between two images of the same pixel
depth, the second image object is initialised to point to the first. No copy
is performed.

25 HUNT ENGINEERING HEL_ILib USER MANUAL

HEL_ImageCOPY
HEL_ImageObj *HEL_ImageCOPY (HEL_ImageObj *InImage,

HEL_ImageObj *OutImage,
int DMA_Channel);

Parameters: InImage: Source Image object

 OutImage: Destination Image object.

 DMA_Channel: DMA controller to be used

Return: Pointer to object on success, HEL_ERR otherwise

Description:

HEL_ImageCOPY uses the DMA to replicate an image, ROI or tile.
No translation of the image pixel data is performed; the source and
destination images are identical in appearance.

XXXX????

The image stride is set by the destination image. This allows ROI
regions to be copied efficiently to on-chip memory.

The function is called asynchronously; that is, calling the function
starts the DMA, but the function may return before the DMA
completes. This allows the processor to do other useful work while
the DMA is in progress.

To check if the copy is complete or not, call the
HEL_ImageCOPYCHK function.

The DMA_Channel passed to the function should be available for
immediate use. It is up to the user to ensure this DMA is reserved for
the duration of the copy; this can be performed within HERON-API
using the DMA claim functions.

Note that if copying an image between locations in on-chip memory,
the DMA is not the fastest approach. Instead, use a simple operator
with no translation; for example, OR(image1, image2, 0x00) will copy
the image in image1’s framebuffer to image2’s framebuffer without
modifying the pixel data.

26 HUNT ENGINEERING HEL_ILib USER MANUAL

HEL_ImageSCALE
Not implemented in this release
This function will scale an input image to the resolution of the output image. All other
parameters of the output image are ignored, and overwritten with the parameters of the
scaled image.

27 HUNT ENGINEERING HEL_ILib USER MANUAL

Arithmetic Operators

HEL_ImageABS
int HEL_ImageABS (HEL_ImageObj *InImage,

HEL_ImageObj *OutImage);

Parameters: InImage: Source Image object

 OutImage: Destination Image object.

Return: HEL_OK on success, HEL_ERR otherwise

Description:

Takes the absolute value of an image. Supports all resolutions.

Destination may be the same as source.

HEL_ImageADD
int HEL_ImageADD(HEL_ImageObj *InImage1,

HEL_ImageObj *InImage2,
HEL_ImageObj *OutImage);

Parameters: InImage1: Source Image object

 InImage2: Second source image

 OutImage: Destination Image object.

Return: HEL_OK on success, HEL_ERR otherwise

Description:
Calculate the sum of two images on a pixel by pixel basis. Supports all
pixel depths. Images must be the same resolution and pixel depth.

Destination may be the same as source.

28 HUNT ENGINEERING HEL_ILib USER MANUAL

HEL_ImageADDK
int HEL_ImageADDK(HEL_ImageObj *InImage,

HEL_ImageObj *OutImage,
int constant);

Parameters: InImage1: Source Image object

 OutImage: Destination Image object

 Constant: Constant to be added

Return: HEL_OK on success, HEL_ERR otherwise

Description:
Adds a constant to an image on a pixel by pixel basis. Supports all
pixel depths.

Destination may be the same as source.

HEL_ImageMPY
int HEL_ImageMPY(HEL_ImageObj *InImage1,

HEL_ImageObj *InImage2,
HEL_ImageObj *OutImage);

Parameters: InImage1: Source Image object

 InImage2: Second source image

 OutImage: Destination Image object.

Return: HEL_OK on success, HEL_ERR otherwise

Description:
Calculate the product of two images on a pixel by pixel basis. Supports
all pixel depths. Images must be the same resolution and pixel depth.

Destination may be the same as source.

29 HUNT ENGINEERING HEL_ILib USER MANUAL

HEL_ImageMPYK
int HEL_ImageMPYK(HEL_ImageObj *InImage,

HEL_ImageObj *OutImage,
int constant);

Parameters: InImage1: Source Image object

 OutImage: Destination Image object

 Constant: Constant to be multiplied

 Shift: Shift value.

Return: HEL_OK on success, HEL_ERR otherwise

Description:
Forms the product of an image with a constant on a pixel by pixel
basis, effectively scaling the pixel values of the image. Supports all
pixel depths.

Destination may be the same as source.

HEL_ImageMPYKSCALE
int HEL_ImageMPYKSCALE(HEL_ImageObj *InImage,

HEL_ImageObj *OutImage,
int constant,
int shift);

Parameters: InImage1: Source Image object

 OutImage: Destination Image object

 Constant: Constant to be multiplied

Return: HEL_OK on success, HEL_ERR otherwise

Description:
Multiplies each pixel in an image by a constant, then scales the result
by shifting left or right. Allows implementation of fixed-point
calculations.

Positive values of the “Shift” constant shift left; negative values shift
right.

Supports all pixel depths.

Destination may be the same as source.

30 HUNT ENGINEERING HEL_ILib USER MANUAL

HEL_ImageMPYSCALE
int HEL_ImageMPYSCALE(HEL_ImageObj *InImage1,

HEL_ImageObj *InImage2,
HEL_ImageObj *OutImage,
int Shift);

Parameters: InImage1: Source Image object

 InImage2: Second source image

 OutImage: Destination Image object.

 Shift: Shift constant

Return: HEL_OK on success, HEL_ERR otherwise

Description:
Multiplies the pixels of two images together, then scales the result by
shifting left or right. Allows implementation of fixed-point
calculations.

Positive values of the “Shift” constant shift left; negative values shift
right.

Supports all pixel depths.

Destination may be the same as source.

HEL_ImageSQR
int HEL_ImageSQR (HEL_ImageObj *InImage,

 HEL_ImageObj *OutImage);

Parameters: InImage: Source Image object

 OutImage: Destination Image object.

Return: HEL_OK on success, HEL_ERR otherwise

Description:
Squares all the pixels of an image. Supports all pixel depths. Images
must be the same resolution and pixel depth.

Destination may be the same as source.

Note that this function is based on HEL_ImageMPY; if a shift is
required, the most efficient approach is to use
HEL_ImageMPYSCALE.

31 HUNT ENGINEERING HEL_ILib USER MANUAL

HEL_ImageSUB
int HEL_ImageSUB(HEL_ImageObj *InImage1,

HEL_ImageObj *InImage2,
HEL_ImageObj *OutImage);

Parameters: InImage1: Source Image object

 InImage2: Second source image (to be
subtracted)

 OutImage: Destination Image object.

Return: HEL_OK on success, HEL_ERR otherwise

Description:
Subtracts one image from another on a pixel by pixel basis. Supports
all pixel depths. Images must be the same resolution and pixel depth.

Destination may be the same as source.

HEL_ImageSUBK
int HEL_ImageSUBK(HEL_ImageObj *InImage,

 HEL_ImageObj *OutImage,
int constant);

Parameters: InImage1: Source Image object

 OutImage: Destination Image object

 Constant: Constant to be subtracted

Return: HEL_OK on success, HEL_ERR otherwise

Description:
Subtracts a constant to an image on a pixel by pixel basis. Supports all
pixel depths.

Destination may be the same as source.

32 HUNT ENGINEERING HEL_ILib USER MANUAL

Logical Operators

HEL_ImageAND
int HEL_ImageAND (HEL_ImageObj *InImage1,

HEL_ImageObj *InImage2,
HEL_ImageObj *OutImage);

Parameters: InImage1: Source Image object

 InImage2: Second source image

 OutImage: Destination Image object.

Return: HEL_OK on success, HEL_ERR otherwise

Description:
ANDs one image with another on a pixel by pixel basis. Supports all
pixel depths. Images must be the same resolution and pixel depth.

Destination may be the same as source.

HEL_ImageANDK
int HEL_ImageANDK(HEL_ImageObj *InImage,

 HEL_ImageObj *OutImage,
int constant);

Parameters: InImage1: Source Image object

 OutImage: Destination Image object

 Constant: Constant for AND

Return: HEL_OK on success, HEL_ERR otherwise

Description:
ANDS a constant with an image on a pixel by pixel basis. Supports all
pixel depths.

Destination may be the same as source.

33 HUNT ENGINEERING HEL_ILib USER MANUAL

HEL_ImageSHLK
int HEL_ImageSHLK(HEL_ImageObj *InImage,

 HEL_ImageObj *OutImage,
int constant);

Parameters: InImage1: Source Image object

 OutImage: Destination Image object

 Constant: Number of bits to shift left

Return: HEL_OK on success, HEL_ERR otherwise

Description:
Logically left-shifts an image by a constant value, on a pixel by pixel
basis. Supports all pixel depths.

Destination may be the same as source.

HEL_ImageSHRK
int HEL_ImageSHRK(HEL_ImageObj *InImage,

 HEL_ImageObj *OutImage,
int constant);

Parameters: InImage1: Source Image object

 OutImage: Destination Image object

 Constant: Number of bits to shift right

Return: HEL_OK on success, HEL_ERR otherwise

Description:
Logically right-shifts an image by a constant value, on a pixel by pixel
basis. Supports all pixel depths.

Destination may be the same as source.

34 HUNT ENGINEERING HEL_ILib USER MANUAL

HEL_ImageNOT
int HEL_ImageNOT(HEL_ImageObj *InImage,

 HEL_ImageObj *OutImage);

Parameters: InImage1: Source Image object

 OutImage: Destination Image object

Return: HEL_OK on success, HEL_ERR otherwise

Description:
Forms the logical NOT of an image. Supports all pixel depths.

Destination may be the same as source.

Note that this operator is functionally equivalent to XORK(image,
image, 0xffffffff); if XORK is used elsewhere in your code you may be
able to reduce program size through using XORK rather than NOT.

HEL_ImageOR
int HEL_ImageOR (HEL_ImageObj *InImage1,

HEL_ImageObj *InImage2,
HEL_ImageObj *OutImage);

Parameters: InImage1: Source Image object

 InImage2: Second source image

 OutImage: Destination Image object.

Return: HEL_OK on success, HEL_ERR otherwise

Description:
ORs one image with another on a pixel by pixel basis. Supports all
pixel depths. Images must be the same resolution and pixel depth.

Destination may be the same as source.

35 HUNT ENGINEERING HEL_ILib USER MANUAL

HEL_ImageORK
int HEL_ImageORK(HEL_ImageObj *InImage,

 HEL_ImageObj *OutImage,
int constant);

Parameters: InImage1: Source Image object

 OutImage: Destination Image object

 Constant: Constant for OR

Return: HEL_OK on success, HEL_ERR otherwise

Description:
ORs a constant with an image on a pixel by pixel basis. Supports all
pixel depths.

Destination may be the same as source.

HEL_ImageXOR
int HEL_ImageXOR(HEL_ImageObj *InImage1,

HEL_ImageObj *InImage2,
HEL_ImageObj *OutImage);

Parameters: InImage1: Source Image object

 InImage2: Second source image

 OutImage: Destination Image object.

Return: HEL_OK on success, HEL_ERR otherwise

Description:
XORs one image with another on a pixel by pixel basis. Supports all
pixel depths. Images must be the same resolution and pixel depth.

Destination may be the same as source.

36 HUNT ENGINEERING HEL_ILib USER MANUAL

HEL_ImageXORK
int HEL_ImageXORK(HEL_ImageObj *InImage,

 HEL_ImageObj *OutImage,
int constant);

Parameters: InImage1: Source Image object

 OutImage: Destination Image object

 Constant: Constant for XOR

Return: HEL_OK on success, HEL_ERR otherwise

Description:
XORs a constant with an image on a pixel by pixel basis. Supports all
pixel depths.

Destination may be the same as source.

HEL_ImageFILLK
int HEL_ImageFILLK(HEL_ImageObj *InImage,

 HEL_ImageObj *OutImage,
int constant);

Parameters: InImage1: Source Image object

 OutImage: Destination Image object

 Constant: Constant for fill

Return: HEL_OK on success, HEL_ERR otherwise

Description:
Fills an image with a constant. Supports all pixel depths.

Destination may be the same as source.

37 HUNT ENGINEERING HEL_ILib USER MANUAL

HEL_ImageFILLRAMP
int HEL_ImageFILLRAMP(HEL_ImageObj *InImage,

int start_value,
int x_ramp,
int y_ramp);

Parameters: InImage1: Source Image object

 Start_Value: Value for first pixel in image

 X_Ramp: Increment for horizontal ramp

 Y_Ramp: Increment for vertical ramp

Return: HEL_OK on success, HEL_ERR otherwise

Description:
Fills an image with a 1D or 2D ramp. Supports all pixel depths.

The first pixel in the image ([0,0] – top left hand corner) is filled with
Start_Value.

Working along the first horizontal line of the image, each pixel is
incremented by X_Ramp. The start value of subsequent lines is
incremented by Y_Ramp.

Each pixel can then be calculated by:

Pixel Value = Start_Value + X * X_RAMP + Y * Y_RAMP;

Destination may be the same as source. Note that this function is not
fully optimised in this release.

38 HUNT ENGINEERING HEL_ILib USER MANUAL

Filtering Functions

HEL_ImageCONV
int HEL_ImageCONV (HEL_ImageObj *SourceImage,

HEL_ImageObj *DestImage,
int KernelX,
int KernelX,
int *Kernel);

Parameters: SourceImage: Source Image object

 DestImage: Result Image object

 KernelX: X-dimension of kernel

 KernelY: Y-dimension of kernel

 Kernel: Kernel data, as a packed array of
integers

Return: HEL_OK on success, HEL_ERR otherwise

Description:
Convolves the image with the given kernel. Supports 16-bit pixels only
in this release.

Applies a convolution kernel of N*M, where N can be any odd-valued
integer from 1-9. M can be any value greater than 1.

The kernel is an array of integers – for example, a 3x3 kernel would be
declared as:

int Kernel33 [3][3] = {1,2,3,4,5,6,7,8,9};

This operation cannot be performed in-place. It is essential that source
and destination buffers are different.

39 HUNT ENGINEERING HEL_ILib USER MANUAL

Standard Filter Configurations
The library includes some standard filter profiles. These are defined in HEL_ImageFilter.h.
This file only needs to be included in the C file calling the convolution function.

The standard profiles are:

Kernel Name Size Gain Notes
Kern33LPF Kern33Gaussian 3x3 16x Gaussian Low Pass Filter.

Kern33LPF is an alias for ease of
use.

Kern33HPF Kern33Laplacian 3x3 1x Laplacian High Pass Filter.

Kern33HPF is an alias for ease of
use.

Kern33PrewittV 3x3 1x Vertical Prewitt operator / gradient
filter

Kern33PrewittH 3x3 1x Horizonal Prewitt operator /
gradient filter

Kern33SobelV 3x3 1x Vertical Sobel operator / gradient
filter

Kern33SobelH 3x3 1x Horizontal Sobel operator / gradient
filter

Kern33Sharpen 3x3 1x Sharpening filter

Kern33APF 3x3 1x All pass filter – use for testing.
Applies kernels to image but should
not affect pixels.

Kern55LPF Kern55Gaussian 5x5 571x Gaussian Low Pass Filter.

Kern55LPF is an alias for ease of
use.

Kern55HPF Kern55Laplacian 5x5 1x Laplacian High Pass Filter.

Kern55HPF is an alias for ease of
use.

Standard kernels are applied in the same way as custom kernels:
HEL_CONV(SourceImage, DestImage,KernelX, KernelY, &Kernel);

For example, to apply a high pass filter with a 3x3 kernel:
HEL_CONV(SourceImage, DestImage, 3, 3, &Kern33HPF);

To apply a low pass filter with a 3x3 kernel, then scale the result for unity gain:
HEL_CONV(SourceImage, DestImage, 3, 3, &Kern33LPF);

HEL_ASHRK(DestImage,DestImage, 4);

40 HUNT ENGINEERING HEL_ILib USER MANUAL

Modifying the standard configurations
HEL_ImageFilter.h creates all the standard configurations as global variables. Once
included, they can be accessed from any file in the project; however, this is not a good use
of resources.

Instead, we recommend that the user copy the profiles he needs out of HEL_ImageFilter.h
and includes them within his code – creating them as global or local variables as
appropriate.

41 HUNT ENGINEERING HEL_ILib USER MANUAL

Performance

The following tables give the expected performance of the library when applied to an M*N
image, based on code and data being in internal/cache memory.

These figures are based on the standard build of the library using the TI v4 compiler.
Options include setting the interrupt latency to 100, no bad aliases and optimisation /
inlining enabled. Other build options may generate different code sizes and performance
figures!

8-bit Functions
Function Description Cycles/ Pixel
ADD Add 2 images 248 + M * (149 + N * 0.4)

ADDK Adds constant to image 588 + M * (28 + N * 1.1)

AND AND 2 images 328 + M * (21 + N * 0.3)

ANDK AND image with constant 248 + M * (13 + N * 0.3)

ASHLK Arithmetic Left-shift image by constant 600 + M * (7 + N * 1.5)

ASHRK Arithmetic Right-shift the image by constant 612 + M * (6 + N * 0.9)

FILLK Fill image with constant 172 + M * (0 + N * 0.2)

FILLRAMP Fill image with ramp 224 + M * (5 + N * 1.5)

MPY Multiply two images 364 + M * (14 + N * 1.5)

MPYK Multiply image by a constant 364 + M * (91 + N * 1.0)

MPYKSCALE Multiply image by a constant and scale the result 572 + M * (29 + N * 1.2)

MPYSCALE Multiply two images & right-shift result 336 + M * (136 + N * 0.9)

NOT Performs NOT on pixels of image 296 + M * (31 + N * 0.2)

OR OR 2 images 368 + M * (26 + N * 0.3)

ORK Ors the image with a constant 248 + M * (13 + N * 0.3)

SHLK Left-shift image by constant 412 + M * (15 + N * 0.3)

SHRK Right-shift image by constant 336 + M * (35 + N * 0.1)

SQUARE Squares all pixel values in the image 348 + M * (144 + N * 0.5)

SUB Subtract one image from another 344 + M * (121 + N * 0.6)

SUBK Subtract constant from image 616 + M * (18 + N * 1.1)

XOR XOR 2 images 296 + M * (31 + N * 0.2)

XORK XOR image with constant 248 + M * (13 + N * 0.3)

42 HUNT ENGINEERING HEL_ILib USER MANUAL

16-bit Functions
ABS Absolute value of image 384 + M * (6 + N * 1.0)

ADD Add 2 images 252 + M * (124 + N * 0.6)

ADDK Adds constant to image 512 + M * (3 + N * 1.0)

AND AND 2 images 76 + M * (8 + N * 0.8)

ANDK AND image with constant 312 + M * (12 + N * 0.5)

ASHLK Arithmetic Left-shift image by constant 512 + M * (10 + N * 1.2)

ASHRK Arithmetic Right-shift the image by constant 544 + M * (11 + N * 1.2)

FILLK Fill image with constant 76 + M * (-2 + N * 0.4)

FILLRAMP Fill image with ramp 304 + M * (-5 + N * 3.0)

MPY Multiply two images 268 + M * (13 + N * 0.9)

MPYK Multiply image by a constant 440 + M * (12 + N * 0.9)

MPYKSCALE Multiply image by a constant and scale 272 + M * (22 + N * 0.8)

MPYSCALE Multiply two images & right-shift result 104 + M * (13 + N * 0.9)

NOT Performs NOT on pixels of image 268 + M * (13 + N * 0.5)

OR OR 2 images 56 + M * (8 + N * 0.8)

ORK Ors the image with a constant 160 + M * (14 + N * 0.5)

SHLK Left-shift image by constant 36 + M * (20 + N * 0.5)

SHRK Right-shift image by constant 120 + M * (6 + N * 0.7)

SQUARE Squares all pixel values in the image 556 + M * (21 + N * 0.9)

SUB Subtract one image from another 76 + M * (109 + N * 0.7)

SUBK Subtract constant from image 632 + M * (3 + N * 1.0)

XOR XOR 2 images 80 + M * (8 + N * 0.8)

CONV3x1 3x1 Convolution 144 + M * (182 + N * 2.0)

CONV3x3 3x3 Convolution 436 + M * (17 + N * 6.0)

CONV3x5 3x5 Convolution 276 + M * (216 + N * 14.8)

CONV3x7 3x7 Convolution 292 + M * (254 + N * 21.0)

CONV3x9 3x9 Convolution 348 + M * (322 + N * 26.9)

CONV5x1 5x1 Convolution 176 + M * (141 + N * 2.4)

CONV5x3 5x3 Convolution 268 + M * (168 + N * 9.7)

CONV5x5 5x5 Convolution 316 + M * (192 + N * 17.0)

CONV5x7 5x7 Convolution 416 + M * (258 + N * 24.0)

CONV5x9 5x9 Convolution 488 + M * (324 + N * 31.0)

CONV7x1 7x1 Convolution 164 + M * (152 + N * 2.8)

CONV7x3 7x3 Convolution 292 + M * (188 + N * 11.1)

CONV7x5 7x5 Convolution 396 + M * (211 + N * 19.5)

CONV7x7 7x7 Convolution 468 + M * (300 + N * 27.4)

43 HUNT ENGINEERING HEL_ILib USER MANUAL

CONV7x9 7x9 Convolution 620 + M * (360 + N * 35.5)

CONV9x1 9x1 Convolution 220 + M * (157 + N * 3.8)

CONV9x3 9x3 Convolution 352 + M * (202 + N * 20.0)

CONV9x5 9x5 Convolution 424 + M * (223 + N * 36.4)

CONV9x7 9x7 Convolution 588 + M * (278 + N * 52.5)

CONV9x9 9x9 Convolution 744 + M * (347 + N * 68.5)

XORK XOR image with constant 252 + M * (13 + N * 0.5)

32-bit Functions
ABS Absolute value of image 204 + M * (23 + N * 0.9)

ADD Add 2 images 552 + M * (7 + N * 1.5)

ADDK Adds constant to image 144 + M * (65 + N * 0.6)

AND AND 2 images 56 + M * (8 + N * 1.5)

ANDK AND image with constant 312 + M * (12 + N * 1.0)

ASHLK Arithmetic Left-shift image by constant 284 + M * (52 + N * 0.7)

ASHRK Arithmetic Right-shift the image by constant 292 + M * (52 + N * 0.7)

FILLK Fill image with constant 76 + M * (0 + N * 0.8)

FILLRAMP Fill image with ramp 236 + M * (2 + N * 6.0)

MPY Multiply two images 232 + M * (35 + N * 2.5)

MPYK Multiply image by a constant 80 + M * (154 + N * 1.1)

MPYKSCALE Multiply image by a constant and scale the result 284 + M * (167 + N * 1.1)

MPYSCALE Multiply two images & right-shift result 56 + M * (209 + N * 1.4)

NOT Performs NOT on pixels of image 240 + M * (13 + N * 1.0)

OR OR 2 images 48 + M * (8 + N * 1.5)

ORK Ors the image with a constant 168 + M * (12 + N * 1.1)

SHLK Left-shift image by constant 28 + M * (29 + N * 0.9)

SHRK Right-shift image by constant 92 + M * (6 + N * 1.3)

SQUARE ??? Squares all pixel values in the image - why??? 224 + M * (193 + N * 1.3)

SUB Subtract one image from another 344 + M * (7 + N * 1.5)

SUBK Subtract constant from image 360 + M * (27 + N * 0.9)

XOR XOR 2 images 52 + M * (9 + N * 1.5)

XORK XOR image with constant 228 + M * (12 + N * 1.0)

44 HUNT ENGINEERING HEL_ILib USER MANUAL

Examples

Introduction
Several examples are included with the library. These demonstrate the way the library is
constructed, how it deals with images, and gradually introduce more complex concepts.

The examples are intended for use on a HUNT ENGINEERING system, running
Server/Loader. There is no requirement for a video interface – images are read to & from
disk.

Using the Examples

Assuming you are using HUNT ENGINEERING hardware, build the examples as follows:

1) Create a new project in the examples directory, using the Tools/Hunt
Engineering/Create New Project tool. The project name should match the
example you want to use – eg “Example1.mak” for the first example.

2) Add file “HrnFile.c” to the project. This should be in the examples directory
alongside the other source files.

3) Set the stack and heap sizes as follows:

Example 1 – default settings

Example 2 – system stack size to 0xA000, IDRAM heap size to 0x2000.

Example 3 – system stack size to 0x2000, IDRAM heap size to 0xA000.

4) Add the imaging library to the project (HEL_ImgLib.lib).

5) Build the project and run it. In the event you receive any errors, check the
source images are accessible – Code Composer Studio may be performing disk
I/O to a different directory to what you expect!

6) The most common error message is “Cannot Open File”. This is caused by
either CCS accessing the wrong directory, or insufficient space being available
on the stack. To change directory with CCS, use File>Open and open a file in
the directory the source image is in.

This will build the example using the standard Code Composer Studio I/O system – using
JTAG to perform all data transfers. This is easy to do, but very slow – it can take minutes
to transfer each image. To switch to using the Server/Loader:

1) Use the “Create Project” tool to create a new project, again named
“ExampleX.mak” – eg Example1.mak for Example 1. This time, enable
Server/Loader support. It will issue several warnings about files already existing
– don’t worry, you are creating new versions!

2) For Example 1 & Example 2, the default stack settings should work. For
Example 3, the System Stack size should be set to 0x1800, while the IDRAM
heap size should be set to 0xA000.

3) As before, add the library and HrnFile.c to your project. You may not need to
do this if you started with the JTAG-based version above.

45 HUNT ENGINEERING HEL_ILib USER MANUAL

4) Open file “Example.h” in your editor. Find the line:

#define HESL 0

Edit this to set HESL to 1. This will enable server/loader support within the
code. Rebuild the application.

5) Launch the Server/Loader plug-in in Code Composer. Select file “NetworkX”
as the network file (eg Network1 for Example 1). Note that the network file as
supplied is for a single HERON module on an HEPC8 – you may need to edit
this to match your configuration.

6) Click “Start S/L”.

7) When Server/Loader has completed loading the code Code Composer should
display the first line of C – debug as normal from here. This is several orders of
magnitude faster than JTAG!

Using the Examples without the “Create New Project” Tool

It is possible to use the examples without using the “Create New Project” Tool. To do this,
you will need to:

1. Create a new BIOS project using Code Composer Studio’s File>New>New
DSP/BIOS Configuration option. Ensure you select the correct base for your
hardware, and that you set global characteristics like clock speed, processor type
etc.

2. Create the correct memory map for your hardware. Ensure that the on-chip
RAM segment is named IDRAM and the bulk store is named SDRAM.

3. Set the SDRAM heap size to be as large as possible. Also, set the IDRAM heap
to the sizes discussed for use with JTAG.

4. Set the system stack size as outlined earlier. Also set the TSK0 and TSK_IDLE
stacks to 0x400.

5. Ensure all interrupt handlers are initialised properly for your hardware.

6. Add ExampleX.c to that project

7. Add HrnFile.c to that project

8. Add the imaging library to the project

9. Open the “Example.h” file. Modify “#define HESL 1” to read:

10. #define HESL 0

11. Add any other required libraries for your configuration

12. Build the project and run it. In the event you receive any errors, check the
source images are accessible – Code Composer Studio may be performing disk
I/O to a different directory to what you expect!

It should be noted that this approach is very slow on many platforms. The JTAG path used
in the emulator offers Kbyte/second bandwidth, rather than the Mbyte/second
performance of the PCI bus.

46 HUNT ENGINEERING HEL_ILib USER MANUAL

Example 1 – Creating & Loading Images

Example1 loads an image from disk, negates all the pixels, and stores the image back to
disk. In doing so, it shows the basics of using the library – creating image objects and
simple processing of them.

The procedure followed is:

Operation Description

HEL_ImageCreate Initialise an image object. The memory for the
structure was allocated by the HEL_ImageObj
declaration earlier.

HEL_ImageReadBMPInfo Read the header of the bitmap. We pass this a pointer
to the image object we’ve just created. After the call,
the image object describes the image on disk.

HEL_ImageCreate We re-initialise the image object to reflect the image on
disk. As part of this call, we allocate memory using the
memalign() function.

HEL_ImageReadBMP Read the bitmap into the image object we’ve created
and the memory we allocated. Note that the read will
add a border to the image if it does not meet the
library’s size restrictions, so the image in memory may
not be the same size as the original.

HEL_ImageNOT Invert all the pixels in the image through the NOT
operator. This is done in-place – the destination image
is the same as the source.

HEL_ImageWriteBMP Save the processed image to disk. This image may be
slightly larger than the original – the ReadBMP
operator may enlarge the image to make sure it has
valid line lengths.

free Frees the image buffer we allocated using memalign.
Not strictly necessary here as we’re about to quit, but
nice for tidiness!

Running under Server/Loader, this process is almost instantaneous; using Code Composer
Studio’s stdio routines it may take several minutes. This is to be expected when doing image
I/O through CCS.

The example is best accessed as a CCS project – Example1.mak, located in the Examples
directory.

47 HUNT ENGINEERING HEL_ILib USER MANUAL

Example 2 – Region of Interest Processing and Copying Images

In this example we introduce the concepts of Region of Interest and copying.

Region of Interest (ROI) selection allows us to pick an area of a large image for processing.
By selecting a small area, we can implement high performance algorithms, without wasting
time on pixels we don’t care about. Copying the image is important too – we can bring
images on-chip for fast access.

In the example, we select a Region of Interest (ROI) and copy it into frame buffer on-chip
for processing. Once processed, we put it back into the image, but as a “picture in picture”
in the top right corner.

The procedure followed is:

48 HUNT ENGINEERING HEL_ILib USER MANUAL

Operation Description

DMA_claim Claim a DMA from the framework. In these examples,
this is stubbed out; in any real application, it will be
necessary to request the DMA resource from a
framework before use.

HEL_ImageCreate As Example 1

HEL_ImageReadBMPInfo As Example 1

HEL_ImageCreate As Example 1

HEL_ImageReadBMP As Example 1

HEL_ROICreate Initialise an image object to describe the ROI (Region of
Interest). The underlying image object is exactly the
same as an image, but the function allows easier set-up
of the object.

HEL_ImageCreate Initialise an image object on-chip. This gives us access to
on-chip RAM. We’ll copy the ROI into this later for
processing.

There’s no need to copy the ROI – it could be processed
in place. However, this is faster than processing in
SDRAM…

HEL_ImageCOPY Use the DMA to copy the ROI into the on-chip buffer
we declared. The DMA was claimed from the
framework earlier.

HEL_ImageCOPYCHK Wait for the DMA to complete.

HEL_ImageANDK Now we have the image on-chip we can perform an
AND function. We AND the image with 0x80…

HEL_ROICreate Initialise the ROI to somewhere else in the image. When
we copy the ROI data back to the image, it will have
moved…

HEL_ImageCOPY Copy the ROI data back to the original framebuffer. As
before, we wait for the DMA to complete.

HEL_ImageWriteBMP As Example 1

Free As Example 1

As before, this is accessed through the CCS project Example2.mak.

49 HUNT ENGINEERING HEL_ILib USER MANUAL

Example 3 – Convolution

Here we use ROI and copying to load an image, select an area, and filter it using some pre-
defined convolution filter kernels. This example also shows how the ROI and Image
objects need only be initialised once, typically at start-up – they do not need to be initialised
for every frame processed.

The convolution function only operates on 16-bit data, so the function also converts from 8
-> 16-bit pixels and back again.

The procedure followed is:

50 HUNT ENGINEERING HEL_ILib USER MANUAL

Operation Description

DMA_claim As Example 2

HEL_ImageCreate As Example 1

HEL_ImageReadBMPInfo As Example 1

HEL_ImageCreate As Example 1

HEL_ImageReadBMP As Example 1

HEL_ROICreate As Example 2

HEL_ROICreate The second ROICreate initialises a second ROI object for
the destination for the processed data. We do this earleir
as we’re doing it statically – all initialisation can be done
before we enter the frame-handling loop.

HEL_ImageCreate (Repeated 4 times)

The first two calls create 8-bit buffers for the ImageCOPY
functions. The second paiur create two 16-bit buffers.

Note that the memory is actually re-used – an 8-bit buffer
can exist in the first half of each 16-bit buffer.

LOOP STARTS

Grab_Image Fake function – the start of the per-frame processing.
Take an image from the “camera”.

HEL_ImageCOPY
HEL_ImageCOPYCHK

Copy ROI on-chip

HEL_ImageCONVERT Convert the image from the fromat of the off-chip image
to the format for processing – in this case from 8-bit to
16-bit.

HEL_ImageCONV Convolve the image using the 3x3 kernel Kern33HPF –
defined in the header HEL_ImageFilter.h…

HEL_ImageCONVERT Convert the filtered data back to 8-bit

HEL_ImageCOPY Copy the filtered data back to the original framebuffer. As
before, we wait for the DMA to complete.

HEL_ImageWriteBMP As Example 1

Free As Example 1

As before, this is accessed through the CCS project Example3.mak.

51 HUNT ENGINEERING HEL_ILib USER MANUAL

Document History

22nd February 2001: BIOS support added to examples.

14th February 2001: Updated with performance figures for v4 compiler

28th February 2001: Updated examples with BIOS support and fixed some v4 compiler
issues.

52 HUNT ENGINEERING HEL_ILib USER MANUAL

Technical Support

Technical support for HUNT ENGINEERING products should first be obtained from the
comprehensive Support section www.hunteng.co.uk/support/index.htm on the HUNT
ENGINEERING web site. This includes FAQs, latest product, software and
documentation updates etc. Or contact your local supplier - if you are unsure of details
please refer to www.hunteng.co.uk for the list of current re-sellers.

HUNT ENGINEERING technical support can be contacted by emailing
support@hunteng.demon.co.uk, calling the direct support telephone number +44 (0)1278
760775, or by calling the general number +44 (0)1278 760188 and choosing the technical
support option.
If you are in North America, South America or Canada, contact our strategic partner
Traquair Data Systems at www.traquair.com/company/support.html for support
information and contact details.

N.B. Technical support for this Library (HEL_Ilib) will be provided for users of
HUNT ENGINEERING hardware ONLY.

http://www.hunteng.co.uk/support/support.htm
www.hunteng.co.uk
mailto:support@hunteng.demon.co.uk
www.traquair.com/company/support.html

	Introduction
	Library Overview
	Library Architecture
	Function Classes
	Function Naming Conventions
	Data Formats
	Header Files

	Interrupt Considerations
	Region of Interest Support
	Tiling System & Memory Management
	Introduction
	Image Tiling
	How Tiling is implemented
	Overview
	Using Tiling
	Data dependency of Tiles
	Dividing the Image Into Tiles

	Library Limitations
	Maximum Image Size
	Image Alignment & Granularity

	The HEL_ImageObj Structure
	Introduction
	Creating the HEL_ImageObj Structure
	Creating Regions of Interest (ROI)

	Example
	Standard Example

	Function List
	
	Image Management

	Function Descriptions
	Overview
	
	Special Requirements:
	Implementation Notes:
	Data Checking:
	Bank Conflicts:
	Endian:
	Interrupts:

	Image Management Functions
	Arithmetic Operators
	Logical Operators
	Filtering Functions

	Performance
	Examples
	Using the Examples
	Using the Examples without the “Create New Project” Tool
	Example 1 – Creating & Loading Images
	Example 2 – Region of Interest Processing and Copying Images
	Example 3 – Convolution

	Document History
	Technical Support

