
V1.2 1105 1

Digital Down Converter Demo/Framework for HERON modules with
FPGA
Rev 1.2 T.Hollis 11/05/05

Introduction

The advent of larger and faster Xilinx FPGA’s has opened up the field of digital signal processing. The large
array of configurable logic blocks within the FPGA give great flexibility together with speed, once configured
the FPGA is not as flexible as a processor but is much faster. For many DSP applications speed is important
especially for the initial processing of the data, after which the data rate reduces and becomes more manageable.
Digital Down Conversion is a technique that takes a band limited high sample rate digitised signal, mixes the
signal to a lower frequency and reduces the sample rate while retaining all the information.
The main advantage of using an FPGA to implement the Digital Down Converter is the speed, but it also has
advantages associated with any digital signal processing system in that once it is defined it is fixed relative to the
sample frequency, and will not change with time or temperature. For example once the coefficients for a digital
filter have been set the characteristics of that filter are defined, if an identical filter is required then implement
the same length filter with the same coefficients. Identical filters are particularly useful in quadrature sampling
systems.
The use of Field Programmable Gate Arrays means that while developing your system if, for example, the filter
characteristics are not quite right all that is required is to reconfigure the FPGA with a different filter. Dedicated
hardware would most likely require component changes.
HUNT ENGINEERING manufacture FPGA modules together with A/D and D/A converters on them with
sample rates of 100MSamples per Second, which makes them suitable for digital radio applications that would
require Digital Down Conversion.
This DDC demo/Framework builds a DDC example for the IO2V2 FPGA module developed by HUNT
ENGINEERING to show how a RF signal can be down converted. The RF signal for this demonstration is
composed of an amplitude modulated signal plus a frequency modulated signal both shifted up in frequency by
10.0MHz. All of the source files for the FPGA and the Host program used can be found on the HUNT
ENGINEERING CD under “Getting Started!Getting Started with FPGA modules and tools!DDC
framework”. Click on the “Files” link for the HERON-IO2V.

What is a DDC
In many applications the signal of interest may not be at the at the optimum part of the spectrum for processing,
for example in a communications system the the signal band may only be narrow, KHz wide, but the signal band
could be centered at RF frequencies, at many MHz. If the signal is sampled according to the Nyquist criterea, ie
twice the highest frequency, then the data rate for the RF signal will be very high. Processing the data at this high
rate is both difficult and expensive in terms of the amount of hardware required. A DDC will select the
frequency band of interest and shift it down in frequency, which allows the data rate required to retain all the
information to be much lower, and consequently reduces the complexity of any further processing.

A DDC can be split into two main sections, first a digital mixer to frequency shift the spectrum of the signal, and
then filters to remove unwanted specral components and allow reduction, or decimation, of the data rate. The
processing in the example DDC is based on quadrature sampling, the amount of hardware is doubled, as there is
now both Phase and Quadrature channels, but the data rate required to retain all the information is halved.
Quadrature sampling has the advantage that the negative frequency components cancel.

The Phase and Quadrature outputs of the DDC could be linked to other CoreGen blocks such as a complex FFT
to analyse the spectrum, or a CORDIC block to extract the magnitude and/or phase from the complex signal.

HUNT ENGINEERING
Chestnut Court, Burton Row,

Brent Knoll, Somerset, TA9 4BP, UK
Tel: (+44) (0)1278 760188,
Fax: (+44) (0)1278 760199,

Email: sales@hunteng.co.uk
http://www.hunteng.co.uk
http://www.hunt-dsp.com

V1.2 1105 2

Demonstration Concept

The demonstration shows how an RF signal, generated within the FPGA and output via one of the DAC’s on the
IO2V2, can be Digitally Down Converted to baseband. The output of the DDC is then Fourier transformed and
compared with the same size Fourier transform of the RF signal.

This allows the demo to be run by simply connecting the outputs of the HERON-IO2V to its inputs – removing
the need for test equipment to evaluate the DDC.

The Demonstration implementation can be split into three sections, first there is a signal generator in the FPGA
that takes a waveform stored in RAM and frequency shifts if up by 10MHz this RF signal is then output onto
DAC-A on the IO2V2. The second section is the DDC, from the HUNT ENGINEERING DDC example, in the
FPGA which takes the signal from ADC-A on the IO2V2, sampled at 100Msamples per Second, and down
converts it to base band. The sample values from the ADC-A and the DDC are then output on the HERON
interface. The third section is a C++ program that generates the waveform values that are downloaded into the
FPGA RAM for the signal generator and also grabs data from the HERON interface and displays it both as
samples in time and as their Fourier Transform.

The Fourier Transform is 500 points so that the resolution on the RF signal will be 200kHz, while after the DDC
the resolution is now 390Hz and the structure of the RF signal can now be seen.

Signal Generator
A block diagram of the signal generator is shown in figure 2. The object of the signal generator is to generate a
composite signal centred on 10MHz.

There are two banks of RAM inside the FPGA that can be loaded over the HERON interface, with values
describing the required signal waveforms. The two blocks of RAM are loaded in the demonstration with an
Amplitude Modulated (AM) waveform and a Frequency Modulated (FM) waveform respectively. These RAMs
are read at a rate of 1.5625 MHz with the address incrementing after each read, when the maximum address
value is reached the next address starts again at zero. The adder combines the waveforms stored in the RAMs to
give a composite signal with both AM and FM. In this demonstration the AM signal is on a 61.035kHz carrier
with a 6.1035kHz modulation, and the FM signal is on a 33.569kHz carrier with a 3.051 kHz modulation
frequency.

Before this signal can be shifted up to 10MHz the sample frequency must be increased, this is achieved using an
interpolating Cascaded Integrator-Comb (CIC) filter to increase the sample frequency by a factor of 64 and
remove the unwanted spectral components. The output is now the same composite signal but now sampled at
100Msamples per Second. To shift this signal up to 10MHz the composite signal is mixed, or multiplied, by a
10MHz carrier. The carrier is generated using a Direct Digital Synthesiser (DDS) with a fixed output frequency
of 10.0MHz at a sample rate of 100MHz. The output of the mixer is connected to DAC-A on the IO2V2 to
produce an analogue output signal. For this demonstration the DAC-A output should be connected to the ADC-A
input on the IO2V2 as this is the input to the DDC.

SIGNAL
GENERATOR

DDC
RF SIGNAL

DISPLAY AND
FOURIER
TRANSFORM

FPGA

Figure 1 – Demonstration Concept

V1.2 1105 3

DDC
The block diagram in figure 3 shows the basic structure of the DDC implemented in this example. The interface
between each of the blocks in the example DDC has been made signed 14 bits, which makes it possible to use
the DAC’s on the IO2V2 to observe the signals. To this end the output from each stage goes not only to the next
stage but also to a multiplexor that allows one of the stage outputs to be selected and linked to DAC’s and to the
Heron interface. The output selected by multiplexor is determined by a register that can be written to using the
HSB. If the HSB is not available the multiplexor output defaults to the output of the second filter stage,the output
of the DDC.

In this example the digital mixer is made up of two digital multipliers, one for the Phase signal and the other for
the Quadrature signal, together with a Direct Digital Synthesiser that generates Phase(cosine) and
Quadrature(sine) signals to Mix with the digitised input samples. The input data stream is from a single A/D
converter, A/D converter ‘A’, and the mixers are used to generate the Phase and Quadrature signals. The default
frequency of the DDS is 10MHz, but this is controlled by a value held in registers that can be written to by the
HSB.

The DDC has three filter, and decimation stages. The first is a Cascaded Integrator Comb(CIC) filter, which will
give the coarse filtering and high decimation, the remaining two filter stages allow for spectral refinement and
further decimation.

Figure 2 – Signal Generator

RAM-A

RAM-B

ADDER

INTERPOLATING
CIC FILTER

DDS
10.0MHz

DAC-A HERON
INTERFACE

OUTPUT

Direct
Digital

Synthesiser

CIC FILTER
PHASE

CIC FILTER
QUAD

1ST FILT.
PHASE

1ST FILT.
QUAD

2ND FILT
PHASE

2ND FILT.
QUAD

I/P from A/D

cos

sin

Phase o/p

Quad o/p

Figure 3 – DDC Block Diagram

V1.2 1105 4

The initial object of this example is to demonstrate the operation of a DDC in an Xilinx FPGA so the suggested
signal levels and frequencies are to this end rather than for a particular system. Once the basic concepts are
understood then the frequencies, or the DDC blocks can be modified and resulting effects observed.

The output of the DDC for this demonstration has been buffered in a FIFO so that when a block of results is
requested by the software 500 samples of both the ADC-A output and the DDC Phase output can be transferred
at the same time despite the sample rate difference between the ADC output and the DDC output . The output
data transferred across the HERON interface has ADC data in the least significant half word and DDC output
data in the most significant half word.

V1.2 1105 5

Host Software
We supply a pre-compiled Windows program for the PC, which can be used to communicate with the HERON-
IO2, and to gather the data captured onto the PC where it is displayed.

The program is called ‘hegraph.exe’ and it is located in the ‘host’ sub-directory of this demonstration. The
‘hegraph.exe’ program is supplied as an exe file, but we have included the Microsoft Visual C/C++ 6 project of
this program as well. This allows you to change it and re-compile it as you want.

The code that controls the waveform generation that is loaded into the RAM’s is in the example2.c file. The
amplitude modulation carrier has been made to have exactly 20 cycles in the 512 point sample window, while
the frequency modulation carrier has exactly 11 cycles. The modulation frequency for the amplitude modulated
signal has exactly 2 cycles in the 512 point sample window, while the modulation frequency for the frequency
modulation has only one cycle. Having everything based on exact cycles in the sample window means that the
output waveform when the RAM is read cyclically will not have any jumps or glitches in it.

Using the DDC Demonstration

The IO2V2 required for the demonstration should be fitted to a carrier board such as a HEPC9 or HEPC8. There
should be a connection between the DAC-A output from the signal generator, and the ADC-A input to the DDC.

HEART carrier like HEPC9
If you have a HEART based module carrier like HEPC9, you can run the Host based demonstration code with
your HERON-IO2 module fitted to any slot. Then you need to configure the HEART connections between the
module and the Host using HeartConf. This is done from inside the hegraph program for you using the network
file that is in the same directory as the host example software.
HEPC8 carrier
If you have an HEPC8, then you must fit your HERON-IO2 module to the first HERON slot as this is the only
slot that has a FIFO connection to the Host machine. In this case the FIFO number the module uses is FIFO #1.
DDC Demonstration Bitstreams
The DDC demonstration for the HERON-IO2V2 is supplied on the HUNT ENGINEERING CD, along with bit streams
that can be loaded directly onto the HERON-IO2V2. The bit streams can be found under ‘fpga\io2v2\ddc_example’ and
the name of the bitstream file reflects the FPGA part number. I.e. 2v1000fg456 is for the HERON-IO2V2 when fitted to
a HEPC9 carrier board. If you are using the HEPC8 carrier board you will need to use the bit stream that ends with
‘_pc8’, so for this example, the correct bit stream will be 2v1000fg465_pc8.rbt.

The FPGA project files can be found in the ISE directory, and the SRC directory for the VHDL source and filter
coefficient files. If you make changes to the project and re-build it you can change the functionality to be whatever you
want.
Running the Host Software
The ‘hegraph.exe’ program is supplied as an exe file, but we have included the Microsoft Visual C/C++ 6
project of this program as well. This allows you to change it and re-compile it as you want.

After you have loaded the correct bit stream into your HERON-IO2 module, the “DONE” LED should be
switched off showing that the configuration was successful. Also The USER LED4 should flash about once per
second, showing that the clocks are properly running in the FPGA. If the DONE LED is off, but the LED is not
flashing it may be because the Delay Locked Loop used in the clock circuit of the FPGA needs to be reset. You
can do this using the utility under “programs ! HUNT ENGINEERING ! API board RESET” if you want,
but such a reset will also be made when you start the hegraph program.

When you run the hegraph program you will see a window appear, that has some control menus available.
Using these menus you will be able to ‘start’ the program (which will send HSB messages to correctly set the
FIFO numbers that the FPGA should use, and also configure HEART if you have a HEART based module
carrier). It will also load the RAMs in the FPGA with the AM and FM wave shapes before starting to capture
and display the data coming from the IO2V2. The data is displayed both as a time sequences of samples and as
their Fourier Transform. One channel shows the ‘RF Signal’ which is from the output of ADC-A, i.e. the input
to the DDC, and the other channel shows the ‘DDC Output’. A typical display is shown in figure 4.

V1.2 1105 6

Channel 1 of the output shows 500 samples of the RF Signal digitised by ADC-A at 100Msamples per Second

(Fs), and below it is its Fourier transform. Because the Fourier transform has been performed on real data, as
relative to complex data with both Phase and Quadrature components, the Fourier transform ouput is displayed
only up to Fs/2 or 50MHz. The output for frequencies between Fs/2 and Fs are a mirror image of those below
Fs/2.

With a sample frequency of 100MHz and a 500 point Fourier transform each resolution cell at the output of the
transform is (100MHz / 500) = 200kHz wide, but both of the AM and FM signals are in a band of about
100kHzand so can not be individually resolved. To resolve down to a frequency of 1kHz with this sample
frequency would require a 100000 point Fourier transform.

The other option to obtain the frequency structure of the signal is to use the Digital Down Converter to lower
the sample frequency for the frequency band of interest. The Demonstration DDC moves a 100kHz band from
up at 10MHz down to baseband and reduces the sample frequency to 195.31kHz. The same 500 point Fourier
transform now has a resolution of (195.31kHz / 500) = 390.6Hz and now the structure of our composite signal
is visable.

The AM signal with its single pair of side bands is shown at 61kHz, and the FM signal where approximately
three pairs of significant side bands are visibleis shown at 33.5kHz. The modulation frequency of the AM signal
is twice the modulation frequency of the FM signal and this can be seen in the relative spacing of the side
bands.

The demonstration uses an Fourier transform on the output of the DDC to show the advantages of the lower
sample frequency. Instead of a Fourier transform the output could have been filtered to separate the AM and
FM signals prior to demodulation, this is much simpler at the lower sample rate.

Figure 4 – Demonstration Output Display

V1.2 1105 7

DDC demonstration Specification

Signal Generator

RAM

RAM Size: 512x16bits

Ram read frequency: 1.5625MHz

Time to read all RAM : (512 / 1.5625MHz) = 327.68 micro Seconds

Adder

Inputs bus width: 14 bits

Output: registered 15 bits

CIC filter:

Input bus width : 14 bits

Number of stages: 5

Sample rate change: 64

Differential delay: 1

Multiplier:

Input bus width: registered 12 bits

Output bus: registered 24 bits

Multiplication rate: 100MHz

DDS:

Output: 12 bits, Sine only

 Data width: 26 bits

Phase angle width: 10 bits

Phase increment(const): 0x666666

Accumulator latency: 1

Accumulator width: 26 bits

DAC
Output Update Rate: 100MHz

Digital Input: 14 bit binary

Analogue Output: +/-1Volt max

V1.2 1105 8

Heron Interface:

Wave shape words written to the IO2V2:

MS half word LS half word

 0x ‘0001’(for Channel A RAM) ‘00’ & (14 bit value)

0x ‘0004’(for Channel B RAM) ‘00’ & (14 bit value)

 Data from the IO2V2:

MS half word LS half word

 ‘00’ & (14 bit of RF signal) ‘00’ & (14 bit of DDC Phase output)

AM / FM Signals:

AM carrier: 20 cycles in 327.68micro Seconds = 61.035kHz

FM carrier: 11 cycles in 327.68 microseconds = 33.569kHz

FM modulation: 1 cycle in 327.68 microseconds = 3.051kHz

FM modulation index: 1.0

AM modulation: 2 cycles in 327.68 microseconds = 6.103kHz

AM modulation index: 0.5

DDC

The DDC is implemented as described in the ‘Implementation of the DDC’ section of this document.

The Phase output from the DDC is buffered with a FIFO to align the ADC-A outputs, because of the different sample
rates.

V1.2 1105 9

Oscillator Jitter

If the difference frequency is reduced, say to about 1kHz by reducing the RF signal generator frequency to
10.001MHz, then any jitter on the crystal oscillator, generating the sampling clock signal for the ADC, will
become evident as noise on the DDC output signal.

Figures 10 shows the output of the DDC with a difference frequency of 1kHz, using the standard 100MHz crystal
oscillator to generate the sample frequency for the ADC. This oscillator has a jitter of 80 picoSeconds peak to
peak.

Figure 11 shows the output of the DDC with the same difference frequency of 1kHz but with a low jitter
100MHz crystal oscillator to generate the sample frequency for the ADC. This oscillator has a jitter of 18
picoSeconds peak to peak.

The HERON-IO2V2 has ‘User Crystal Oscillator’ sites that can be used for oscillators to suit the application
frequency and jitter requirements.

If the application requires the ADC’s to band pass sample the input signal then the effect of jitter will become
worse.

FIGURE 10 – DDC Output with Poor Jitter

V1.2 1105 10

FIGURE 11 – DDC Output with Good Jitter

V1.2 1105 11

Implementation of the DDC

There is a DDC CoreGen block available which could be used instead of the individual CoreGen building blocks
used in this example. The architecture of the DDC block is very similar to that of the DDC in the example and
when implemented took up a similar amount of the FPGA.

Using individual blocks for this example has the advantage that the signals at every stage can be tapped off and
displayed. In general the use of a single CoreGen DDC block, using several CoreGen blocks to make up a DDC
or writing VHDL to implement the equivalent to the CoreGen block, but tailored to your application, depends to
the level of control in the FPGA implementation your application requires.

DDC Specification

Input: The input to the DDC will be from the A/D converter ‘A’ on the IO2V2 module.

Sample Frequency: 100Msamples per Second

Sample Resolution: 12bit signed.

Analogue Input: +/- 1Volt Max

Direct Digital Synthesiser(DDS):
 DDS Frequency(default): 10MHz

 Frequency Resolution(delF): 1.5Hz

 Spurious Free Dynamic Range: 60dB

Sine and Cosine output: 12 bit signed

Frequency Control : 26 bits default to give 10MHz, the value is held in registers at HSB
addresses 5,6,7 and 8.

HSB address Description

HSB address 5 LS 8 bits (D7 – D0)

HSB address 6 Next 8 bits (D15 – D8)

HSB address 7 Next 8 bits (D23 – D16)

HSB address 8 MS 2 bits (D25 – D24)

MS--XXXXXX(D25)(D24)--LS

 DDS FREQUENCY CONTROL REGISTERS

How to calculate the 26 bit value to be loaded into these registers is described in the Xilinx DDS data
sheet.

Multipliers:
Input Resolution: 12 bit signed on both inputs.

Output Resolution: 24 bit signed.

One multiplication per sample clock cycle (100MHz)

The output of the multiplier is truncated to 14 bit signed with no gain.

V1.2 1105 12

Cascaded Integrator Comb(CIC) filter:

Number of Stages: 5

Decimation Rate: 16

Differential delay: 1

Output Resolution: 33 bit signed

The output of the multiplier is truncated to 14 bit signed with no gain.

First FIR Filter:
Cut off Frequency: 0.048Fs or 300kHz

Filter Length: 35 taps

Filter coefficients: symmetrical

Phase characteristic: linear

Decimation Rate: 8

Output Resolution: 32 bits

The output of the first filter is truncated to 14 bit signed with a gain of two.

Second FIR Filter:
Cut off Frequency: 0.128Fs or 100kHz.

Filter length: 35 taps

Filter Coefficients: non_symmetrical

Decimation Rate: 4

Output Resolution: 32 bits

The output of the second filter is truncated to 14 bit signed with a gain of 8.

Multiplexor:
The Multiplexor selects the signal that is linked to the DAC’s and Heron Interface using the value in a
register at address 4 of the HSB. The default value in this register connects the second filter Phase and
Quadrature outputs to the DAC’s and Heron interface.

 In the DDC demo the multiplexor stays in its default state and connects the second filter Phase output
and the RF input signal to the DAC’s and Heron interface.

REGISTER VALUE CONNNECTION

XXXXX000 ADC output on DAC ‘A’ and LS half word of
Heron interface output.

DDS Sine output on DAC ‘B’ and MS half word of
Heron interface output.

XXXXX001 Phase Multiplier output on DAC ‘A’ and LS half
word of Heron interface output.

Quadrature Multiplier output on DAC ‘B’ and
MS half word of Heron interface output.

XXXXX010 Phase CIC output on DAC ‘A’ and LS half word
of Heron interface output.

Quadrature CIC output on DAC ‘B’ and MS half
word of Heron interface output.

V1.2 1105 13

XXXXX011 Phase First Filter output on DAC ‘A’ and LS half
word of Heron interface output.

Quadrature First Filter output on DAC ‘B’ and
MS half word of Heron interface output.

XXXXX100

XXXXX101

XXXXX110

XXXXX111

Phase Second Filter output on DAC ‘A’ and LS
half word of Heron interface output.

Quadrature Second Filter output on DAC ‘B’ and
MS half word of Heron interface output.

(Default output.)

 MULTIPLEXOR CONTROL VALUES

The LEDs on the IO2V2 reflect the multiplexor control bits.

D/A Outputs:
Output Update Rate: 100MHz

Digital Input: 14 bit binary

Analogue Output: +/-1Volt max

Heron Interface:
The 32 bit data word to the Heron interface is split into two 16 bit half words :-

MS half word LS half word

 ‘00’ & (14 bit of RF signal) ‘00’ & (14 bit of DDC Phase output)

V1.2 1105 14

DDC CORE GENERATOR BLOCKS

Direct Digital Synthesiser

The DDS is a Xilinx ‘CoreGen’ block which has a two page GUI to define the operation of the built core. If
further information is required there is a data sheet available by selecting the button at the bottom of the GUI.

In this example the phase increment value is registered in and then its value is added into the accumulator on
every cycle of the clock. The output value of the accumulator has a number of the least significant bits removed
by the slicer Q1. The remaining bits address the sine/cosine look up table T1.

Figure 12 - Block Diagram of DDS

V1.2 1105 15

Output Width: 12Bits selected to match the A/D converter output width.

Function: ‘Sine and Cosine’ selected for quadrature multiplication.

Negative Sine or Cosine options have not been selected for this example as the output from
the A/D converter is not in quadrature form.

Memory Type: Distributed ROM selected.

Handshake Options: No handshake options are required for this example as the outputs are updating on every
clock cycle.

Clock Enable: The clock enable is not selected as the DDS is running at 100MHz Sample clock frequency.

Clear Options: Clear options are not selected for this example.

Pipelined: Pipelined option selected.

Layout: Create RPM option not selected.

FIGURE 13 -- CoreGen DDS GUI Page 1

V1.2 1105 16

Data Width: This is the width of the input data bus used to define the phase increment, and has been set to the
full accumulator width of 26 bits.

Phase Angle Width(Blut): This is the number of bits used to address the sine/cosine look up table and is
directly related to the Spurious Free Dynamic Range by 6dB’s per bit. So 10 bits gives the required 60dB
Spurious free dynamic range.

Phase Increment: The register option has been selected so that the Phase Increment value is loaded via the 26
bit input data bus, using the Write Enable(WE). In this example it allows the frequency to be updated via the
HSB. The Phase Increment is defined by the relationship:-

 DelPhi = (Fout / Fclk) * 2^(Blut)

 With Fout = 10MHz; Fclk = 100MHz; and Blut = 10bits

 Then DelPhi = 102.4

This real number now needs to be converted into a binary number that con be loaded into the DDS via the data
input. The value at the output of the accumulator is 26 bits of which only the most significant 10 bits are used to
address the sine/cosine look up table and are the integer part of ‘DelPhi’, the remaining 16 bits are the fractional
part. To generate the binary number to represent 102.4 :-

 Multiply 102.4 by 2^(16) = 6710886.4

This has in effect moved the point by 16 binary places

 Convert to binary =1100110 01100110 01100110

But this is only 23 bits as the most significant bits are zero, so the full 26 bit value is:-

 0001100110 0110011001100110

FIGURE 14 -- CoreGen DDS GUI Page 2

V1.2 1105 17

Phase Offset: Not selected for this example.

Phase accumulator: 26 bit width with single cycle latency selected. The number of bits is determined by the
frequency resolution relative to clock frequency:-

 Bpa = log(Fclk / delF) / log(2)

 With Fclk = 100MHz and delF = 1.5Hz

 then Bpa = 26bits

V1.2 1105 18

Multipliers

There are two identical multipliers in the DDC, one for the Phase signal and the other for the Quadrature signal.
The digitised signal from the A/D converter goes to both multipliers and is multiplied by the cosine output of the
DDS for the Phase signal, and by the cosine output of the DDS for the Quadrature signal.

The multiplier is a CoreGen block called ‘ddc_mult’ with properties defined by the four GUI’s.

Multiplier Type: A parallel type has been selected as the multiplier will have to perform a multiplication on
every sample clock cycle. Neither of the inputs are Constant , so this option has not been selected. The Multiplier
Construction could be either using LUT’s or the Multiplier Blocks, as the example is for a VirtexII, with a high
speed multiplier the best option is the Multiplier Block.

Optimisation: The multiplier is optimised for speed as it has to run at 100MHz.

Layout: The Create RPM option has been selected, with a rectangular shape.

FIGURE 15 -- CoreGen Multiplier GUI Page 1

V1.2 1105 19

Input Options: The Register Inputs option has been selected as the safe option with the multiplications
occurring on every sample clock cycle, the latency in this example is not important. Both inputs are 12 bit
signed.

FIGURE 16 -- CoreGen Multiplier GUI Page 2

FIGURE 17 -- CoreGen Multiplier GUI Page 3

V1.2 1105 20

Output Options: The width of the two inputs to the multiplier are 12 bit signed so to give the full range of
output 24 bits would be required, but in this case only 16 bits are selected. The least significant bits are truncated
by the Core Generator. The safe option is to register the output.

Handshaking Options: No handshaking options have been selected as the multiplier is performing a
multiplication on every cycle.

Pipeline: Maximum pipelining has been selected for high speed operation.

Register Options: For this high speed application none of the Register Options have been selected.

Information: With the inputs and output registered and maximum pipelining the latency is three clock cycles.

FIGURE 18 -- CoreGen Multiplier GUI Page 4

V1.2 1105 21

Cascaded Integrator Comb(CIC) Filter

CIC filters are multiplierless structures, consisting only of adders subtractors and registers. They are typically
employed in narrowband applications that have large excess sample rates, to reduce the sample rate and filter off
the unwanted frequency components. CIC filters have a linear phase response and constant group delay.

Figure 19 shows the frequency response of a CIC filter used in this example with 5 stages and a decimation rate
of 16, the frequency scale is relative to the pre-decimated sample frequency. The notches in the response occur at
the new sample frequency and its harmonics, as with all digital filters the frequency response is symmetrical
about Fs/2 and is repeated at all the harmonics of the sample frequency.

At the lower sample frequency, after decimation, the filter response is aliased about the new sample frequency
and its harmonics. The main lobe, or passband, as shown in figure 20 is twice as wide as all the other lobes, this
means that all the aliased spectra will all have a notch at the centre of the passband. If the frequency band of
interest is close to the peak of the passband then all the aliased components will be highly attenuated as they are
in the response notches

The difference signal frequency of 50KHz will on our response be at (0.05/100)Fs or 0.0005Fs where the droop
in the passband response is less than 0.01dB. If the band width of the signals was wider then the droop in the
frequency response may have to be considered. The first aliased component onto the required 50kHz signal from
the spectrum centred on Fs/16 will be over 200dB’s down.

 The sum frequency component at 20MHz is on our filter response at (20/100)Fs or 0.2Fs, which lies between
the notch at (3/16)Fs or 0.1875Fs and the notch at (4/16)Fs or 0.25Fs at a level of –120dB’s relative to the pass
band.

If the frequency band of interest was wider, say 0.5*(Fs/16), then the droop across the band would be 20 dB’s as
shown in figure 20, and the first alias would also be only 20dB’s down at the edge of the band. This is why CIC
filters are only useful for narrowband signals.

 Fs/16 2Fs/16 3Fs/16 4Fs/16

 FIGURE 19 -- CIC Filter Frequency Responce

V1.2 1105 22

The pass band amplitude characteristic has a fairly gentle roll off, which is fine for narrow band signals where
the droop over the band of interest is small, but for wider band signals the roll off in the pass band may cause
problems, this can be overcome using a separate FIR filter with an amplitude characteristic to correct the droop.
Figure 20 shows the frequency response of the pass band in more detail out to a frequency of 0.5Fs/16.

The CIC filter with the above frequency response can be generated using the ‘CoreGen’

0 0.5Fs/16

 FIGURE 20 - CIC Filter Passband Response.

V1.2 1105 23

Input bus width: The input to the CIC filter has been set to 14 bits.

Number of stages: The number of stages to give the frequency characteristics as shown in figure 13 is 5.

Sample rate change: The required decimation rate for this filter is 16.

Differential delay: The delay selected in the differentiator stages is 1.

The output bus width for the above CIC filter is 32 bits signed, in this example the resolution will be reduced
to 14 bits before the first FIR filter stage.

First Filter Stage

The first filter stage is a 35 stage Finite Impulse Response (FIR) filter. The sample frequency from the CIC filter
is (100/16) = 6.25MHz, so for a time window of 35 samples, the length of the filter, the minimum cut off
frequency for a low pass filter will be approximately (6.25/35) = 178kHz. To get a reasonable cut off response
the cut off frequency must be higher than this, in this example a cut off frequency of (0.048*6.25) = 300kHz has
been selected, the frequency response is shown in figure 22. This design is from
http://www.nauticom.net/www/jtaft site which uses Java design tools to design the filter on line. This is a
symmetric filter so that only half of the coefficient values need to be stored. The filter coefficients are not in the
form required for the ‘CoreGen’ filter block generator as it is expecting a 14 bit signed integer, the values in the
file .\\src\filt1.coe have been normalised to have the maximum 14 bit signed value (+8191) for the largest
coefficient.

FIGURE 21 -- CoreGen CIC Filter GUI

http://www.nauticom.net/www/jtaft

V1.2 1105 24

The filter has a fairly gentle roll off, with a linear phase response. The stop band attenuation is approximately
50dBs’

The FIR filter with the above frequency response can be generated using the ‘CoreGen’.

FIGURE 22 -- First FIR Filter Responce

V1.2 1105 25

Filter Type: The filter type selected is decimation filter to further reduce the sample rate.

Filter Options: A decimation rate of 8 has been selected.

Structure: To give the filter response shown in figure 22 a symmetric filter with 35 taps has been selected.
Selecting the ‘Coefficients’ button brings up the GUI shown in figure 24.

Coefficient Width: 14 bits has been selected to match the 14 bit data input.

FIGURE 23 -- First FIR ‘CoreGen’ GUI Page 1

FIGURE 24 -- Coefficients ‘CoreGen’ GUI

V1.2 1105 26

Coefficient Data Type: The coefficient data type is signed.

Coefficient Reload: For this filter the coefficients are fixed.

Optimize Coefficients: This has been selected.

Input Data: 14 bit signed has been selected.

Implementation Option: The original sample frequency for this example is 100MHz, and this sample clock is
used to clock the filter with New Data(ND) only being supplied every 16 Cycles because the data rate is
decimated by 16 in the CIC filter stage. The Information window shows that for the serial implementation the
filter requires 15 clock cycles/sample, which is less than the 16 cycles available, so the filter can have serial
implementation. This saves on the amount of FPGA area required to implement filter.

Output Options: The output from the filter is registered. This is the safe option.

Second Filter Stage

The data sample rate at the input to the second filter has been reduced by the first filter to
781.25kSamples/second. A low pass filter with a cut off frequency of 100kHz is implemented for this final stage,
which relative to the sample frequency is 0.128Fs. A 35 tap filter will now give a sharp filter response at
100kHz. The filter response is shown in figure 26 which is from http://www.nauticom.net/www/jtaft site which
uses Java design tools to design the filter on line

FIGURE 25 -- First FIR ‘CoreGen’ GUI Page 2

http://www.nauticom.net/www/jtaft

V1.2 1105 27

The coefficients file for the ‘CoreGen’ filter design block will be normalised to give a maximum14 bit signed
integer value for the maximum coefficient value H(7). The values in the file ..\src\filt2.coe have been normalised
to have the maximum 14 bit signed value (+8191) for the largest coefficient.

FIGURE 26 -- Second FIR Filter Responce

FIGURE 27 -- Second FIR ‘CoreGen’ GUI Page 1

V1.2 1105 28

 Filter Type: In Figure 27 the filter type is single rate, but this has been changed for the demo to a decimation
rate of 4.

Filter Options: For this example the number of channels selected is 1. In a system design with both Phase and
Quadraure channels it would be more efficient in terms of FPGA area to set the number of channels to 2 as
common elements can then be shared.

Structure: This is a non symmetric filter with 35 taps. The coefficients button opens another GUI as shown in
figure 26.

Coefficient Width: This is set to 14 bits to match the input data.

Coefficient Data Type: The coefficients are signed.

Coefficient Reload: In this example the coefficients are fixed.

Optimise Coefficients: This is selected.

FIGURE 29 -- Second FIR ‘CoreGen’ GUI Page 2

FIGURE 28 -- Coefficients ‘CoreGen’ GUI

V1.2 1105 29

Input Data: The input data from the first filter is 14 bit signed.

Implementation Option: The Filter is clocked at the100MHz original sample frequency but at this stage the
sample frequency is down to 781.25kSamples/sec, which makes the serial implementation option possible as it
only requires 14 clock cycles/sample. This gives savings in the required FPGA area over a parallel
implementation.

Output Options: The register output option has been selected.

V1.2 1105 30

CoreGen DDC Block

This CoreGen block was not used in the example, but was generated to give a comparison of the amount of space
required within the FPGA if the DDC was implemented using separate CoreGen blocks to make up the DDC relative to
this CoreGen DDC block.

System Clock Rate: The system clock frequency is 100MHz.

Input Sample Rate: The ADC converts at a rate of 100 Msamples per Second.

Input Data Width: The ADC is a 12 bit converter.

Output Data Width: To match the example, and also the DAC’s, a 14 bit output has been selected.

DDS Spurious Free Dynamic Range: This has been set at 60 dB’s to match the DDS in the example.

DDS Frequency Resolution: This has been set at 1.5Hz to match the DDS in the example.

FIGURE 30 -- ‘CoreGen’ DDC GUI Page 1

FIGURE 31 -- ‘CoreGen’ DDC GUI Page 2

V1.2 1105 31

DDS Frequency: This has been simplified from the DDS in the example to a fixed frequency of 10.0MHz.

DDS Phase: The phase offset has been set to None as in the DDS in the example.

Mixer Output Width: set at 14 Bits.

CIC Filter: This has been set up, as far as possible, to match the CIC filter used in the example.

Number stages: Five stages selected.

Differential Delay: Set at 1.

Decimation Rate: A fixed decimation rate of 16 has been selected to match the Example.

CIC Output Width: 14 bits has been selected. In the example the output width is greater, 32 bits, of which
14 bits are selected to give a suitable gain.

CIC Gain: A fixed gain value of 1 has been selected.

FIGURE 32 -- ‘CoreGen’ DDC GUI Page 3

V1.2 1105 32

Compensation Filter (CFIR): This is equivalent to the first filter stage in the example, and has been set up to be
the same.

FilterType: Decimation filter with a decimation rate of eight.

Response: This is a symmetric filter

Result Precision: 14bits.

Coefficients: As with the filter in the example it has 35 taps and uses the same coefficient file as the first
filter in the example.

Programmable Filter: This is equivalent to the second filter in the example, and has been set up to be the same.

Filter Type: This is a single rate filter.

Response: The filter coefficients are non symmetric.

Result Precision: 14 bits.

FIGURE 33 -- ‘CoreGen’ DDC GUI Page 4

FIGURE 34 -- ‘CoreGen’ DDC GUI Page 5

V1.2 1105 33

Coefficients: This filter is the same length as the second filter in the example and is loaded with the same
coefficient file.

This page summarises the inputs on the previous five pages.

Comparison of FPGA Areas Used

To give an approximate comparison of the FPGA area used with the DDC example the device utilization has been noted
for three different build situations. The first is just Example 2 off the CD without any changes, this gives the basic
device utilization for the HUNT ENGINEERING interfaces.

Example 2 Device Utilization

MULT18x18 0 of 40 0%
RAM16’s 8 of 40 20%
Slices 427 of 5120 8%

The second situation is for the DDC example, here most of the HUNT ENGINEERING interfaces are still
used with the exception of the HERON Write as no data is written to the IO2V2 over the HERON interface.
This is why the number of Block rams has reduced.

DDC Example Device Utilization

MULT18x18 2 of 40 5%
RAM16’s 4 of 40 10%
Slices 2163 of 5120 42%

The Last situation is when the CoreGen DDC was implemented instead of the individual blocks as in the DDC
Example. This is a slightly simpler implementation, as none of the signal multiplexing used in the DDC Example is
present.

CoreGen DDC Device Utilization

MULT18x18 2 of 40 5%
RAM16’s 4 of 40 20%
Slices 1811 of 5120 35%

This exercise has shown that the DDC Example is using about 1736 slices relative to the CoreGen simplified
equivalent of 1384 slices. So there is a saving in logic when you use the Coregen block.

FIGURE 35-- ‘CoreGen’ DDC GUI Page 6

V1.2 1105 34

The choice of how to implement a DDC will depend on the application. If the FPGA area used is not a
problem but development time is a problem then use the CoreGen DDC, if it will do the job for you. If the
CoreGen DDC does not do what is required then the next step back is to use individual CoreGen blocks as in
the DDC Example. If the application requires the DDC to be tailored to fit the FPGA to optimise on the
speed and/or silicon area used then it will require a specific customised design, which will require a longer
development time, but as shown by this example – not much longer.

	Introduction
	What is a DDC
	
	Demonstration Concept

	Signal Generator
	DDC
	Host Software
	Using the DDC Demonstration
	HEART carrier like HEPC9
	HEPC8 carrier
	DDC Demonstration Bitstreams
	Running the Host Software

	DDC demonstration Specification

	Oscillator Jitter
	Implementation of the DDC
	DDC Specification
	Direct Digital Synthesiser(DDS):
	Multipliers:	
	Cascaded Integrator Comb(CIC) filter:
	First FIR Filter:
	Second FIR Filter:
	Multiplexor:
	D/A Outputs:
	Heron Interface:

	DDC CORE GENERATOR BLOCKS
	Direct Digital Synthesiser
	Multipliers
	Cascaded Integrator Comb(CIC) Filter
	First Filter Stage
	Second Filter Stage
	CoreGen DDC Block
	Comparison of FPGA Areas Used

