
HUNT ENGINEERING is a trading style of HUNT ENGINEERING (U.K.) Ltd, Co Reg No 3333633
Directors P.Warnes & N.J.Warnes. Reg’d office 34 & 38 North St, Bridgwater, Somerset TA6 3YD. VAT Reg’d No GB 515 8449 31

HUNT ENGINEERING
Chestnut Court, Burton Row,

 Brent Knoll, Somerset, TA9 4BP, UK
Tel: (+44) (0)1278 760188,
Fax: (+44) (0)1278 760199,

Email: sales@hunteng.demon.co.uk
URL: http://www.hunteng.co.uk

The “3heron_api” HERON-API example.
Rev 2.0 P.Warnes 17-7-00 (changed to reflect CCS 1.2 and additional HUNT CCS plug ins)

The DSP code in the “3heron_api” example uses HERON-API to control the Config line and then uses
HERON-API to send messages between the processors and to the host program over the HERON
FIFO.

The use of HERON-API means that the example is easily changed to use any HERON C6000 module.
HERON-API uses DSP/BIOS internally so must be built using Code Composer Studio.

This document describes how to make the project and build the DSP application.

History

Example revision 2.0 made for HERON-API V2.3

Example revision 3.0 made for CCS V1.2

Example software

The example that we supply consists of three C files for the DSPs called module1.c, module2.c and
module3.c. They need to be built using Code Composer Studio and use the HERON-API software that
has been installed on your PC when you did the “install drivers and tools” from your CD.

Hardware setup

The example shows the communication between two HERON modules. This means that the first
HERON module must be connected to the second, and the second must be connected to the third.

The demo as shipped is for an HEPC8 with the modules in HERON slots 1 2 & 3. The module in Slot
1 has its default routing jumpers set to 0, so that is communicates with the second module via FIFO #2.
The module in slot 2 has its default routing jumpers set to 3 so the first module is accessed through
FIFO #0 – the default and the third module is accessed through FIFO #2. The module in slot 3 has its
default routing jumpers set to 3 so that the second module is accessed through FIFO #0 – the default.

If you are running the demo on a different hardware configuration, you will need to change the
#defines in the DSP source code to reflect the connections that you have.

DSP/BIOS

DSP/BIOS is the multi-threading environment provided as part of the Code Composer development
Environment. It also provided services for configuring processor features such as hardware interrupts
and timers.

As it is included in Code Composer Studio, along with the Compile tools for the C6000, all users of
HERON hardware will be able to use it.

This example is configured and built using Code Composer and DSP/BIOS.

HERON_API

HERON_API is the hardware independence layer that we provide to access HERON FIFOs and other
features of the HERON modules. It allows the DMA engines of the processor to be used when
transferring to and from the FIFOS without knowledge of the FIFO hardware, or the DMA engines.

Starting

We assume that a user of this example has previously installed Code Composer and followed the
confidence checks. They should also be familiar with using Code Composer.

Configuring the example

HUNT ENGINEERING provide several Code Composer Plug-in tools that allow you to make your
development faster. The first one is one that sets up Code Composer ready for your hardware, so you
don’t need to configure device drivers etc and can be found from the Start!Programs!HUNT
ENGINEERING!AutoConfigure CCS.

We assume that this is already set up, but this plug in also copies cdb files etc into the correct
locations.

When you start with the 3heron_api example, simply copy the source files from the CD into a new
directory. Then start Code Composer and you will see the Parallel Debug Manager appear. Start a
debug window for the first HERON module (Open!CPU_1), another window for the second HERON
module (Open!CPU_2) and another for the third HERON module (Open!CPU_3). You need to

create a new project for each of these processors.

Now create the project for the first HERON module. Choose Tools!HUNT ENGINEERING!Create
new Heron-API project. This will guide you through setting up the project and as long as you choose
the name “module1” for the project it will incorporate the module1.c file Then all you need to do is to
open the .cdb file and insert the TSK0 and set it to be _maintask.

Create the project for the second HERON module. Choose Tools!HUNT ENGINEERING!Create
new Heron-API project. This will guide you through setting up the project and as long as you choose
the name “module2” for the project it will incorporate the module2.c file Then all you need to do is to
open the .cdb file and insert the TSK0 and set it to be _mainatsk.

Repeat this process for the third HERON module, choosing the name “module3” ensuring that you
incorporate the module3.c file. Don’t forget to open the .cdb file and insert the TSK0 and set it to be
_maintask.

Manually Setting up the Project

For your information (or if there is some problem) here is how to set up the project yourself:

Make sure that you have copied all of the .cdb files from the directory %HEAPI_DIR%\heron_api\cmd
into the directory C6000\bios\include under the directory where your Code Composer Studio
installation is (usually c:\ti).

The First HERON module.

In Code Composer, select ‘Project !new’ and choose the path for your project. The name must be
module1 for this demo.

Select ‘File ! New ! DSP/BIOS Config’ and choose the correct .cdb file for your hardware. This
will have a name that uses your HERON module number and possibly an option that is available for
that module.

In the DSP/BIOS config tool, right click on Global properties, and check that the CLKOUT property is
set to the frequency of your processor module. This is used by DSP/BIOS to calculate the correct
settings for the timer period.

This .cdb file has some items set up which are for HERON-API. DO NOT CHANGE THESE!

For this example you need to set up a Task that is called TSK0. Under its properties set its function to
be “_maintask”.

Use ‘File ! Save’ to save the cdb file to the project directory as module1.cdb.

Saving the .cdb file wll generate a .cmd file, but that file will not place the sections heronapi_code and
heronapi_data. For this reason there is a .cmd file supplied by us, in the directory
%HEAPI_DIR%\heron_api\cmd that will be called by your heron module number and have _bios.cmd
at the end, i.e. heronx_bios.cmd. You need to copy this to your project directory.

Now add the source file to the project and the .cdb, and also the heronx_slbios.cmd. Edit the .cmd file
that you have inserted and change the .cmd file that it includes to replace the ***** by the name of
your .cdb file. I.e. change *****cfg.cmd to be module1cfg.cmd.

Because Code Composer Studio does not support the use of environmental variables in the library path
you also need to change the line that has %HESL_DIR% to have the actual path name of where you
installed the Server/Loader.

Add the HERON_API library “herons.lib” from the directory %HEAPI_DIR%\heron_api\lib to the
project.

Go to Project Options and add %HEAPI_DIR%\heron_api\inc and %HESL_DIR%\inc to the include
path.

Select –o3 optimisation from the compiler optimisation menu.

The default .cdb file will actually place all code into external memory, and switch on the program
cache. This is a good general purpose setting, but might need ot be changed for your actual application.

You can now build the demo by choosing Project ! re-build all. There should be no errors or
warnings.

The second and third HERON modules.

Repeat the process above to build the DSP code for the second and third modules, but use the names
module2 and module3 in place of module1.

Running the Demo

The DSP application is now ready for use in the example, by running the demo. You need to load
module1.out onto the module in the first slot, module2.out onto the second module and module3.out
into the third slot. You can observe the program by running or stepping through each program

	Example software
	Hardware setup
	DSP/BIOS
	HERON_API
	Starting
	Configuring the example

