
HUNT ENGINEERING is a trading style of HUNT ENGINEERING (U.K.) Ltd, Co Reg No 3333633
Directors P.Warnes & N.J.Warnes. Reg’d office 34 & 38 North St, Bridgwater, Somerset TA6 3YD. VAT Reg’d No GB 515 8449 31

HUNT ENGINEERING
Chestnut Court, Burton Row,

 Brent Knoll, Somerset, TA9 4BP, UK
Tel: (+44) (0)1278 760188,
Fax: (+44) (0)1278 760199,

Email: sales@hunteng.demon.co.uk
URL: http://www.hunteng.co.uk

The “SWI model” HERON_API example.
Rev 1.0 P.Warnes 17-7-00

The “SWI model” example is not really a program but more of a code segment to demonstrate how the
HeronSwiOpen function can be used. It has been taken from a real system example provided to a
customer to demonstrate the use of their system, and was functional in that case.

The DSP code uses HERON-API to manage the transfer of data over the HERON FIFOS.

The use of HERON-API means that the example is easily changed to use any HERON C6000 module.
HERON-API uses DSP/BIOS internally so must be built using Code Composer Studio.

This document describes how to functions are used to overlap input and output of data.

History

Example revision 1.0 first written for HERON-API V2.6 and CCS 1.2

Example software

The example that we supply is a C file called example.c. It needs to be changed to reflect your actual
needs, and then built using Code Composer Studio and uses the HERON-API software that has been
installed on your PC when you did the “install drivers and tools” from your CD.

DSP/BIOS

DSP/BIOS is the multi-threading environment provided as part of the Code Composer development
Environment. It also provided services for configuring processor features such as hardware interrupts
and timers.

As it is included in Code Composer Studio, along with the Compile tools for the C6000, all users of
HERON hardware will be able to use it.

This example is configured and built using Code Composer and DSP/BIOS.

HERON_API

HERON_API is the hardware independence layer that we provide to access HERON FIFOs and other
features of the HERON modules. It allows the DMA engines of the processor to be used when
transferring to and from the FIFOS without knowledge of the FIFO hardware, or the DMA engines.

SWI model

The I/O model used by HERON-API is an asynchronous one. That is the HeronRead and HeronWrite
functions actually start the I/O, but it is left to the user to determine when the I/O is complete.
Sometimes it is convenient for the user program to be actively informed when the I/O is complete. The
SWI model is one way of achieving this.

To use the SWI model, the user must write the function that should be executed upon completion of
the I/O and configure a DSP/BIOS SWI to reference that function. Then the user should use the
HeronSwiOpen function to open a HERON FIFO, and pass to that function the pointer to the SWI
object. HERON-API will then schedule this object for operation using a SWI_Post function as soon as
the I/O is completed.

Setting up the example

The example is a HERON_API project that can be set up using the create project plug in. Choose
Tools!HUNT ENGINEERING!Create new Heron-API project. This will guide you through setting
up the project and as long as you choose the name “example” for the project it will incorporate the
example.c file Then all you need to do is to open the .cdb file and insert the TSK0 and set it to be
_maintask.

In this case you also need two SWIs, called SWI0 and SWI1. Set SWI0 to reference the function name
_inputswi and SWI1 to reference the function name _outputswi.

The example

The example program is taken from a real system, where an I/O board provided data continuously, and
the data should be passed to a host computer for storage. Later some processing will be made by the
DSP before the data is stored.

The problem is that the I/O board data cannot be stopped, and must be accepted at all times. The data
stream to the host however can be disrupted for a number of reasons. The non real-time operating
system may stop servicing our data while another task is being undertaken, and in fact disk caches
often stop accepting data while the data is actually written to the media.

So we must have a method to store up data buffers on the DSP, which can be sent to the host when the
disruption finishes.

The example manages some data buffers in a circular manner, and uses a SWI function on the input
data to immediately start the next input. Then some buffer management is performed , and processing
could be inserted here.

A second SWI function is used on the output data stream, and if this succeeds we check to see if a new
buffer is ready to be sent. If there is one ready we start the next output. If there is not a buffer ready to
send we must exit this SWI to allow other processes to be scheduled. In this case we set a variable to
show that the host output should be restarted as soon as a buffer is filled.

	Example software
	DSP/BIOS
	HERON_API
	SWI model
	Setting up the example
	The example

