

HUNT ENGINEERING is a trading style of HUNT ENGINEERING (U.K.) Ltd, Co Reg No 3333633
Directors P.Warnes & N.J.Warnes. Reg’d office 34 & 38 North St, Bridgwater, Somerset TA6 3YD. VAT Reg’d No GB 515 8449 31

HUNT ENGINEERING
Chestnut Court, Burton Row,

Brent Knoll, Somerset, TA9 4BP, UK
Tel: (+44) (0)1278 760188,
Fax: (+44) (0)1278 760199,

Email: sales@hunteng.co.uk
www.hunteng.co.uk
www.hunt-dsp.com

Using HERON modules with FPGAs to connect to FPDP
Rev 2.0 R.Williams 17-12-02

The HERON-FPGA and HERON-IO families are ranges of HERON modules with FPGAs, often
combined with some interface capability. The HERON-FPGA family in particular provides an FPGA
along with a large number of signals that are routed to general-purpose connectors. As such these modules
are highly suited to applications that connect to FPDP.

Some of the modules in the HERON-FPGA range include a Differential ECL driver & receiver chip. The
main reason for providing this chip is to allow the module to be connected to clocks such as the
PSTROBE PECL clock provided by the Front Panel Data Port (FPDP) standard.

For modules such as the HERON-FPGA4 that do not have an ECL driver & receiver chip FPDP can still
be used. With these modules the FPDP clock is simply connected directly to the Virtex-II FPGA, which
must implement the LVPECL_33 I/O standard in the input IOB connected to the PSTROBE signal.

This example shows how a user can connect the FPGA to FPDP to gather or send data from that bus.
Because this is only really interesting when combined with other processing in the FPGA program, it is
not offered as Intellectual property that allows direct use of a module for an FPDP interface, but merely as
a demonstration of how you would make this connection.

If however a user wishes to use an FPGA module simply as an interface between FPDP and a DSP, they
should discuss this with HUNT ENGINEERING, as it would be very simple to make such an interface if
the requirements can be tightly defined.

History

Rev 1.0 First written (in schematic form)
Rev 2.0 Converted the example to VHDL

2

What is FPDP?

FPDP is a simple interface that has been defined for interconnecting equipment from different vendors.
Data acquisition boards and DSP boards for example. It is a 32 bit interface that can be clocked at up to
40Mhz, allowing the transfer of data at 160Mbytes/sec.

It uses a simple ribbon cable interface, which has a single ended strobe and a differential PECL strobe
defined. It is recommended that the differential version of the strobe signal is used.

FPDP can be used in framing modes, and even in time division multiplexing to use the same FPDP
connection to carry data from several sources.

For the full specification see http://www.ics-ltd.com/login_a.htm

Electrical Connection

The first consideration that must be made when interfacing to FPDP is what kind of electrical connection
is required to use it. Only when correct electrical connection has been made can the FPGA be
programmed to receive data from the FPDP interface.

The physical FPDP bus can be connected to the I/O pins of an FPGA, but the FPDP signals are TTL
level signals that are driven using FCT type logic. According to the FPDP standard, a receiver should
terminate some of these signals. The HERON-FPGA modules do not have these terminations, but using
the differential Strobe signal should work well with short cables.

As the FPDP signals are TTL they cannot be directly connected to an FPGA that is not 5V tolerant (like
the Virtex II devices). The HERON-FPGA2 and Spartan-II based HERON-FPGA3S all use 5V tolerant
FPGA devices and can therefore be used very simply with FPDP.

However, the processing requirements of your application may dictate that a Virtex-II FPGA be used.
Virtex-II based modules like the HERON-FPGA3V and HERON-FPGA4V have the possibility to fit
100R series resistors into the I/O lines at build time. The combination of these resistors and the over-
voltage protection on these modules make it safe to connect FPDP to these modules, if the 100R series
resistors are fitted.

The following sections discuss what is required if you intend to use the HERON-FPGA3V or HERON-
FPGA4V with FPDP. For those who are not using the Virtex-II based modules you may skip these
sections.

3

Using FPDP with a Virtex-II HERON-FPGA3V

If you intend to use the Virtex-II HERON-FPGA3V module to implement FPDP, please ensure that you
specify the inclusion of 100R series resistors for your board when you place the order.

The location of the resistor packs is shown in the picture below (the picture shows the underside of the
board). The resistor packs are normally fitted as 0R resistors (marked with 000 on the pack). For the use
of 5V signals these must be fitted as 100R (package marked 101) to the sites for Connectors A, B and C of
the HERON-FPGA3 such that each signal has 100R in series between the FPDP cable and the FPGA.

If when you ordered your Virtex-II HERON-FPGA3V module you did not inform HUNT
ENGINEERING that you would be interfacing to 5V FPDP signals, then your board will not have these
resistors fitted.

In this case you can either contact HUNT ENGINEERING to discuss having the resistors fitted at the
factory, or alternatively you can fit the resistors yourself. Please note, although HUNT ENGINEERING
is happy for you to fit the resistors yourself, any damage done to the board in doing so is not covered
under the warranty.

4

Using FPDP with a Virtex-II HERON-FPGA4V

If you intend to use the Virtex-II HERON-FPGA4V module to implement FPDP, please ensure that you
specify the inclusion of 100R series resistors for your board when you place the order.

The location of the resistor packs is shown in the picture below (the picture shows the underside of the
board). The resistor packs are normally fitted as 0R resistors (marked with 000 on the pack). For the use
of 5V signals these must be fitted as 100R (package marked 101) to the sites for Connectors A, B and C of
the HERON-FPGA4 such that each signal has 100R in series between the FPDP cable and the FPGA.

If when you ordered your Virtex-II HERON-FPGA4V module you did not inform HUNT
ENGINEERING that you would be interfacing to 5V FPDP signals, then your board will not have these
resistors fitted.

In this case you can either contact HUNT ENGINEERING to discuss having the resistors fitted at the
factory, or alternatively you can fit the resistors yourself. Please note, although HUNT ENGINEERING
is happy for you to fit the resistors yourself, any damage done to the board in doing so is not covered
under the warranty.

5

VHDL Example : Interfacing to FPDP Raw Data

This document is provided along with two VHDL source files that demonstrate interfacing to raw FPDP
data.

The FPDP standard works on several levels. At the lowest level there are electrical connection
considerations and cabling issues. At the next level, logic is required that will present the signals provided
on an FPDP cable to an internal FPGA interface that can process the incoming data. At the final level,
logic is required that will decode packets and frames of data from the incoming data stream.

The final level of packet and frame decoding is highly system specific and is outside the scope of this
document. That part of FPDP interface design is left for the user to implement.

The remainder of this document deals with the example VHDL module, and how this module can be used
to interface the signals presented on an FPDP cable to a user’s ‘application specific’ VHDL design.

The FPDP Signals

The FPDP interface is quite simple, being made up of a 32-bit data path and associated control signals.
These control signals include a Strobe signal used to clock the data and signals used for indicating valid
data and frame synchronisation.

The control signals are:

! PSTROBE PECL data strobe

! DIR* Asserted low by the data source

! DVALID* Asserted low by the data source when the data bus has valid data

! NRDY* Asserted low by the receiver when it is not ready to receive data

! SUSPEND* Asserted by the receiver to show that there is soon to be a condition
 where it cannot receive data (the sender can send up to 16 more words)

! SYNC* Asserted low by the data source during the last data word of a frame.
 Intended for use by the receiver to synchronise data capture

! PIO1, PIO2 Programmable I/O lines for implementing user defined functions

Note: * indicates active low signals

The Example VHDL ‘FPDP’ Component

When the FPGA is being used to receive data from an FPDP source, this makes the FPGA the receiver
and the FPDP source the transmitter. As such, the FPGA interface must connect to the PSTROBE,
DIR*, DVALID*, SUSPEND*, SYNC* and D(31:0) as inputs, and drive the NRDY* signal as an output.

It is up to the user to define if the programmable I/O signals PIO1 and PIO2 are to be used, and whether
they are to be inputs or outputs, to or from the FPGA. In our example, they have been configured as
inputs, but this can be simply changed to create outputs instead.

6

The example VHDL that has been provided illustrates how the FPGA should be used when connecting to
FPDP as a receiver.

There are two VHDL files provided as part of the FPDP example. The first file ‘fpdp.vhd’ contains one
entity named ‘FPDP’ which can be used in your design to connect to FPDP. The second file ‘fpdp.vho’
contains instantiation templates that allow you to quickly cut and paste the required component
declaration and component instantiation lines into your own design source.

The FPDP entity declaration is shown below:

 entity FPDP is

 port (

 -- FPDP Control Inputs and Output

 PSTROBE_PIN : in std_logic;

 DVALID_PIN : in std_logic;

 SYNC_PIN : in std_logic;

 SUSPEND_PIN : in std_logic;

 DIR_PIN : in std_logic;

 PIO1_PIN : in std_logic;

 PIO2_PIN : in std_logic;

 NRDY_PIN : out std_logic;

 NRDY_PIN_EN : out std_logic;

 -- FPDP Data Inputs

 DIN_PINS : in std_logic_vector(31 downto 0);

 -- FPDP Control Signals

 FPDP_CLOCK : out std_logic;

 FPDP_DVALID : out std_logic;

 FPDP_SYNC : out std_logic;

 FPDP_SUSPEND : out std_logic;

 FPDP_DIR : out std_logic;

 FPDP_PIO1 : out std_logic;

 FPDP_PIO2 : out std_logic;

 FPDP_READY : in std_logic;

 -- FPDP Data Signals

 FPDP_DIN : out std_logic_vector(31 downto 0)

);

 end FPDP;

7

The FPDP component has ten ports that must be connected to signals that form the I/Os of the device.
That is, each of these ports must be directly connected to signals in the USER_AP interface which
connect to user I/Os.

The ten ports are PSTROBE_PIN, DVALID_PIN, SYNC_PIN, SUSPEND_PIN, DIR_PIN, PIO1_PIN,
PIO2_PIN, NRDY_PIN, NRDY_PIN_EN and DIN_PINS.

The following VHDL code fragment (part of the component instantiation) shows an example of the
connections that would be made when using the HERON-FPGA3.

 PSTROBE_PIN => QTTL,

 DVALID_PIN => CONN_C_IN(2),

 SYNC_PIN => CONN_C_IN(3),

 SUSPEND_PIN => CONN_C_IN(6),

 DIR_PIN => CONN_C_IN(7),

 PIO1_PIN => CONN_C_IN(4),

 PIO2_PIN => CONN_C_IN(5),

 NRDY_PIN => CONN_C_OUT(8),

 NRDY_PIN_EN => CONN_C_EN(8),

 DIN_PINS => FPDP_DIN_PINS,

In this example the external ECL driver/receiver chip of the HERON-FPGA3 is being used for the
PSTROBE clock input. The output of the ECL receiver buffer is provided through the USER_AP signal
‘QTTL’. The signals CONN_C(2) up to CONN_C(7) on Connector C are used as inputs, and the signal
CONN_C(8) is used as an output. Note, the FPDP component uses both the CONN_C_OUT(8)
connector output and the CONN_C_EN(8) output buffer enable signal to implement a tri-stateable output
for the FPDP NRDY signal.

The signal FPDP_DIN_PINS has been defined as a std_logic_vector of 32-bits in size in this example, and
is assembled from 32 signals input on Connectors A, B and C as follows:

 FPDP_DIN_PINS <= CONN_C_IN(1 downto 0) & CONN_B_IN & CONN_A_IN;

The remaining component ports that all start with the string ‘FPDP_’ are the internal FPDP signals that
are intended to be used the user application. Any synchronous element in your design that uses the FPDP
control or data signals must be clocked using a clock net driven by the FPDP_CLOCK output of the FPDP
component.

8

Using the Example ‘FPDP’ Component

It is now up to the user to decide how to process the data output by the FPDP component. This decision
will be based on the data format being driven onto the FPDP bus, and how the data processing will deal
with that data. However, regardless of the logic used to connect to this component the following points
should be remembered.

1. The FPDP_CLOCK pin must be used to clock logic connected to the registered FPDP data bus
FPDP_DIN, and the four registered control signals FPDP_DIR, FPDP_DVALID, FPDP_SUSPEND and
FPDP_SYNC. The rising edge of the FPDP_CLOCK signal must be used.

2. The FPDP_READY signal is asynchronous, so therefore does not need to be clocked using
FPDP_CLOCK. The FPDP_READY component port should be driven high during normal operation,
and set low when no more data can be received.

3. The registered FPDP_DVALID signal is active low. It will be asserted low during a clock cycle where
the registered 32-bit data bus contains valid data. This means that the FPDP_DVALID signal can be
inverted and used to drive an active high clock enable input on the next stage of logic.

4. The FPDP_SYNC signal is active low. It will be asserted low during the last valid data word of a
received frame. The receiving logic must use a logic 0 on this signal to reset input logic such the next
valid data that is received is treated as the first data of a new frame.

A time-specification must be applied to the design that specifies the clock rate of the FPDP_CLOCK net.
This time-specification should be set to 40MHz, which is the maximum FPDP clock rate.

The ‘FPDP’ Component Implementation

The PSTROBE clock signal must connected to as an input, and inside the FPGA must be used to drive a
clock net that is driven by a global clock buffer. Inside the FPDP component, a BUFG component is used
to buffer this clock net. The output of the global clock buffer drives the FPDP_CLOCK port, and should
be used by all synchronous logic elements that interface to the FPDP signals.

The control signals DIR*, DVALID*, SUSPEND* and SYNC* are all registered with input flip-flops inside
the FPDP component. These flip-flops are clocked using the FPDP_CLOCK signal. The 32-bits of data are
also registered with input flip-flops inside the FPDP component. Again, the input flip-flops are all clocked
using the FPDP_CLOCK signal.

For the NRDY* output control signal, which is defined as open collector, an output buffer with tri-state
control is required (for example, the component OBUFT). With the FPDP component, this is
implemented using the OBUFT components that appear in the design tree’s top source module ‘top.vhd’.
The input of the OBUFT is driven with a logic ‘0’ by connecting the NRDY_PIN port of the FPDP
component to a digital I/O connector output (e.g. CONN_C_OUT(8)). The tri-state control associated
with that output must then be driven with the state of the FPDP_READY signal. This is done by
connecting the NRDY_PIN_EN port to the corresponding digital I/O tri-state enable (e.g.
CONN_C_EN(8)). This simulates the use of an open collector driver.

When the FPDP_READY signal is high, the output buffer will be tri-stated. When the ready signal is low,
the buffer will be enabled, forcing the NRDY* signal low. Therefore, the FPDP_READY signal should be
driven high inside the FPGA when data can be received and driven low when data cannot be received.

9

FPDP Cabling

How you choose to connect the FPDP cable to your FPGA is largely up to you. However, what is
provided below is an example that can be used as a starting point for your cabling solution.

This cabling solution may be used with the HERON-FPGA2 and HERON-FPGA3 as shown. If you are
using the HERON-FPGA4 module, you will need to modify the STROBE connection so that it uses two
devices I/Os. This change will also require that an LVPECL_33 IOSTANDARD input buffer is used in
the source module ‘top.vhd’ in place of the default buffer types. A VHDL code example that does this is
included at the end of the ‘fpdp.vho’ instantiation template.

Remember, if you are using Virtex-II based modules you must check that the correct series resistors are
being used and that the resistors that are fitted match the connections used. Please refer to the section
‘Electrical Connection’ for more information on the requirements of the series resistors for Virtex-II
boards.

The FPDP cable usually uses a fine pitch ribbon cable, and a connector of the type 8825E-080-175 (KEL
no strain relief), 8825R-080-175 (KEL with strain relief) or P25E-080S-TG (Robinson Nugent).

Signal FPDP Cable Core HERON-FPGA
Connector Pin

GND 1 N/C
STROBE 2 N/C

GND 3 N/C
GND 4 N/C
GND 5 N/C
GND 6 C19

NRDY* 7 C18
GND 8 C17
DIR* 9 C16
GND 10 N/C

RESERVED 11 N/C
GND 12 C15

SUSPEND* 13 C14
GND 14 N/C
GND 15 N/C
GND 16 C13
PIO2 17 C12
GND 18 C11
PIO1 19 C10
GND 20 N/C

RESERVED 21 N/C
GND 22 N/C

RESERVED 23 N/C
GND 24 Serial I/O - GND

PSTROBE 25 Serial I/O - DECL
GND 26 Serial I/O - GND

PSTROBE* 27 Serial I/O - DECLB
GND 28 C9

SYNC* 29 C8
GND 30 C7

DVALID* 31 C6
GND 32 C5

10

D31 33 C4
D30 34 C2

GND 35 C1
D29 36 B30
D28 37 B28

GND 38 B27
D27 39 B26
D26 40 B24

GND 41 B21
D25 42 B22
D24 43 B20

GND 44 B19
D23 45 B18
D22 46 B16

GND 47 B13
D21 48 B14
D20 49 B12

GND 50 B11
D19 51 B10
D18 52 B8

GND 53 B5
D17 54 B6
D16 55 B4

GND 56 B3
D15 57 B2
D14 58 A30

GND 59 A29
D13 60 A28
D12 61 A26

GND 62 A23
D11 63 A24
D10 64 A22

GND 65 A21
D09 66 A20
D08 67 A18

GND 68 A15
D07 69 A16
D06 70 A14

GND 71 A11
D05 72 A12
D04 73 A10

GND 74 A9
D03 75 A8
D02 76 A6

GND 77 A5
D01 78 A4
D00 79 A2

GND 80 A1

 ** The differential ECL clock results in a single input to the FPGA for the HERON-FPGA2 & 3.

	What is FPDP?
	Electrical Connection
	
	Using FPDP with a Virtex-II HERON-FPGA3V
	Using FPDP with a Virtex-II HERON-FPGA4V

	VHDL Example : Interfacing to FPDP Raw Data
	FPDP Cabling

