HUNT ENGINEERING iR
& *Q Chestnut Court, Burton Row, Xeme@@@

*Q“"\Q & Brent Knoll, Somerset, TA9 4BP, UK _ rom$!
_‘\q@" \\\‘:‘,ﬁ‘ Tel: (+44) (0)1278 760188, ‘
o t\\(‘!f*‘ Fax: (+44) (0)1278 760199, i Pory Nwrk
sV ““ [Email: sales@hunteng.co.uk
\\“ e http://www.hunteng.co.uk
http://www.hunt-dsp.com TEXAS INSTRUMENTS

Getting Started with the Embedded PowerPC — PowerPC Example A

Rev 1.0 J. Thie 13-10-04
Rev 2.0 K.Chircop 10-04-06

Introduction

HUNT ENGINEERING modules such as the HERON-FPGA9 and HERON-FPGA12 feature the
Virtex II Pro and Virtex 4 devices from Xilinx. These devices do not consist only of an FPGA but also of
one or more embedded PowerPC processors.

The embedded PowerPC processor in the Virtex II Pro/Virtex 4 device is actual silicon embedded within
the FPGA. On its own, the embedded PowerPC can’t do much. It needs a bus and memory attached to it
so that it can run programs. Such resources have to be created out of FPGA gates and connected to the
embedded PowerPC processor.

Similarly, the embedded PowerPC can access a variety of other resources, such as UARTS, timers, JTAG
interface, and external memory (and external memory controllers). The resources (or the access to them)
are created out of FPGA gates, and you will have to write the VHDL to implement the resources to be
used by the embedded PowerPC.

With having an embedded PowerPC so tightly integrated with the FPGA, you can also think of adding less
traditional resources, such as an FFT engine, filters, or convolution, to the embedded PowerPC. You can
do anything you like really, but you will have to write the VHDL to create the resource, or to write VHDL
to implement access to off-chip resources (as in the case of external memory).

EDK

To assist you in creating a basic hardware design using the embedded PowerPC, Xilinx supplies the EDK
(Embedded Development Kit). The most important constituent of the EDK is XPS (Xilinx Platform
Studio). XPS is a Windows/Linux program with which you can graphically add or remove hardware
resources, build the hardware, and do the software development.

With XPS you can write and build embedded PowerPC C code, and create/maintain PowerPC software
projects. Integrated within XPS are debug tools for the embedded PowerPC, called XMD and Software
Debugger. The Software Debugger is a version of GDB (the GNU debugger), used for C code level
debugging. XMD is a low-level debugger that is used as an intermediary by the Software Debugger.

Tool Flow

With XPS you can build only a basic hardware design. Typically one or two buses are added to the
embedded Power PC, some BlockRAM (to run the embedded PowerPC program out of), a clock module
(to clock the hardware accessed by the embedded PowerPC), a system reset (to enable resetting the
embedded PowerPC and the hardware it accesses) and a JTAG module (used for debugging embedded
PowerPC programs).

Often you also want to use hardware resources that are not available in XPS. One example of such

hardware resources is the HERON/HEART and module resources, such as FIFOs, HSB, and the LEDs.
Another example is CoreGen FFTs, filters, and convolutions. In almost all designs you will want access to
resources that are not available via XPS.

XPS allows you to export a project to ISE’s Project Navigator. In the exporting process, the Project
Navigator design is changed so that it interfaces with the embedded PowerPC hardware design. Within
Project Navigator you can access hardware resources such as the HIL (Hardware Interface Layer, which
you use to access HERON/HEART and module features), CoreGen blocks, and so on.

Once you have completed the Project Navigator design, and built it successfully, import it back into XPS.
In the importing process, hardware details of the Project Navigator design are added to the XPS project.

The final step is to add the embedded PowerPC software executable to the bit-stream. This step initialises
the BlockRAM with code and data of the executable. Upon loading the bit-stream, the embedded Power
PC will then start executing code from the BlockRAM. When you are still in a development stage,
however, you can also use XMD and the Software Debugger to initialise the BlockRAM (with an
embedded PowerPC executable program).

Using PowerPC Example A

On the HUNT CD you will find a directory for each HERON-FPGA and -IO module in the ‘cd:\fpga
directory. Each directory contains the HIL (Hardware Interface Library) and examples for that module.
For HERON modules with an embedded PowerPC you will find a sub-directory ‘PPC_Ex_A’ which

contains an example of how you could make use of the embedded PowerPC processor that is within the
Virtex II Pro/Virtex 4 device.

The ‘PPC_Ex_A’ directory contains an example project for XPS (Xilinx Platform Studio), which is used as
a starting point to create a bit-stream. In this example, our aim is to get an embedded PowerPC program
up and running, and to flash some LEDs that are on the Virtex II Pro/Virtex 4 HERON module. We will
use some BlockRAM that can be accessed by the embedded PowerPC. The BlockRAM is used to store
and execute the embedded PowerPC program.

First, copy the whole of the module’s example directory from the HUNT ENGINEERING CD to your
hatd disk. For example, for a HERON-FPGA12 you would copy ‘cd:\fpga\fpgal2v1’. All files will have
the ‘read-only’ attribute set because you copy from a CD. Change all file attributes in the directory you just
copied (except for the files in the ‘Common’ sub-directory). Alternatively, use the zip file in the module
directory and unzip into a directory on your hard disk. The zip file will contain the whole module
directory, but all file-attributes will be set propetly.

When you have a proper copy on your hard disk, open the example project with XPS (Start — Programs
— Xilinx Platform Studio x.x = Xilinx Platform Studio, where x.x is the version number, 8.1i in my
case). Open the example project, ‘system.xmp’, in the ‘PPC_Ex_A’ sub-directory of the directory you
copied to hard disk.

Block Diagram (memory)

Let’s first have a look at what components we have in the example project, and how they are connected up

to the embedded PowerPC Processor. You can get a Block Diagram by selecting ‘Project = Generate
and View Block Diagram’.

PROCESSOR

405
poans 1

pibloph_bridge
ins1_plbIoph_bridge

=

e

SLAVES 0 F myopb MEMORY _UNIT MEMORY _UNIT

 pib_bram _if_cnir opb_bram_if_cntir

- it pib_bram il crtle t_cply_bram_if_crlly

col
=

bram_biock
inst_plb_Bram_block

opb_core_sspl rof
opb_core_sspl

ciook_module_ref jlagppe_cntir proc_sys reset
‘mydem jtagppe_entir_i resor_Hock

B A

SPECS KEY
EDK VERSION &1.07 SYMBOLS
ARCH virtex2p [Bus connections Extarnal Ports
bus interface = -
PART XcVPTET2-6 FUET mastar orinitiator PPl input
GENERATED Mom Apr 10 09:25:06 2006 e b @ siavo or targot Ml ovpout

inowt

COLORS

Bus Standards

oce Mrse Mos Msocm .Gsmpzewfgm
Wes Www as [l xu prerigre

First, notice two sets of BlockRAM memory. One piece of memory is attached to the OPB (On-chip
Processor local Bus), and the other piece of memory to the PLB (the IBM Processor Local Bus). Please
refer to Xilinx EDK documentation for more information on the OPB and PLB. For this discussion it is
sufficient to know that PLLB and OPB are buses, each with their own characteristics, from the Xilinx core
library. The address bus width of the PLB is 32 bits; the data bus width is 64 bits. The address bus width
of the OPB is also 32 bits and the data bus width is 32 bits. The PLB is faster than the OPB, but
consumes more FPGA resources. Typically you use the PLB for fast resources.

The two pieces of memory are the two ‘bram_block” components. Two controllers control access from
the OPB to its BlockRAM (‘opb_bram_if cntlt’) and PLB to its BlockRAM (‘plb_bram_if_cntlt’). For

readers who are not hardware engineers, you can view the controllers as an interface between the bus and
the BlockRAM.

The properties most interesting about the BlockRAM components is at what (bus) address they are and
what size they are. If you select select ‘Project — Generate and View Design Report’ and clicking on
‘Memory Controllers — inst_plb_bram_if cntrl’, the properties of the PLB BlockRAM controller will
appeatr.

General

IP Core plb_bram_if _cnte

Yersion N l.l]l;

Driver API

Parameters
These are parameters set for this module. Refer to the IP documentation for
complete information about module parameters.
Parameters marked with indicate parameters set by the user.
Parameters marked with indicate parameters set by the system.

Manme Value
c_baseaddr OxFFFFCO00
Ehighaddr OxFFFFFFFF
Lir‘u:lude=bur5t=cacheln=5uppurt]
C_num_masters 2
c_plb_awidth 3z
c_plb_clk_periud=p5 20000
c_plb_dwidth a4
c_plb_rid_width 1

Post Synthesis Device Utilization
Resource Type Used Available Percent
Slices 193 4928 K]
Slice Flip Flops 203 0856 2
4 input LUTs 185 Q556 1

We can see that the PLLB BlockRAM is addressed from OxFFFFC0000 until OxFFFFFFFF, a 16 Kb size of
memory.

Clicking on the BlockRAM component itself ‘Memory —> inst_bram_block’, you can see the block’s ports’
address width (‘C_PORT_AWIDTH’) and data width (‘C_PORT_DWITH?).

IP Core | bram_block

Yersion 1.00.a

Parameters

These are parameters set for this module. Refer to the IP documentation for
complete information about module parameters,
Parameters marked with indicate parameters set by the user.

Parameters marked with indicate parameters set by the system.
Mame Yalue

&FﬂMIL‘f wirtex2p
&MEMSIZE 02000
&N) |"-"|='l.-"'-.II E 4
2PDRT=.&.WIDTH a2
C_PORT_DWIDTH a2

Post Synthesis Device Utilization

Resource Type Used Available Parcent

BRAMS 16 44 26

It is absolutely essential that a block of memory is present at the upper end of the embedded PowerPC’s 4
Gb address space. Upon reset, the embedded PowerPC will jump to address OxFFFFFFFC. Here it will
read one 32-bit instruction, typically a jump to an adjacent address. The jump can only be made to an
adjacent address because the address is encoded in the instruction, and they can only jump to a sub-section
of the 4Gb embedded PowerPC address space. The Xilinxk EDK tools by default implement a jump to an
address not far from OxFFFFFFFC, say OxFFFFFFCO.

At address OxFFFFFFCO there are 4 instructions. A target address is constructed, the address can be
anywhere in the embedded PowerPC’s 4 Gb address range. The target address is stored in a 32-bit register.
Next, a jump is made to whatever address the register points to. This way any address in the 4 Gb address
space can be reached. The target address is usually the starting point of your program (‘_crt(’).

It is the Xilinx tools which, when creating an executable, insert those instructions at addresses
OxFFFFFFFC and OxFFFFFFCO. When you use the Xilinx kernel, the procedure is the same, but the
second jump will be made to the start of the Xilinx kernel rather than your program.

Because the embedded PowerPC always starts reading instructions at address OxFFFFFFFC, you must
always have some memory present at this address (and later on, when creating programs, ensure that
there’s a jump instruction there, but we’ll discuss that later). In this example, we have 16 Kb, and this
covers the OxFFFFFFEFC address, and also the OxFFFFFFCO address to which the Xilinx tools will have
the program jump to.

Block Diagram (plb to opb bridge)

myplh

dbZopb_bridge
inst plb2opb bridge

The OPB to PLB bridge is used to map a range of PLB addresses onto OPB addresses. If in the ‘System

Design Report’ you click ‘Bridges — inst_plb2opb_bridge’, you can see that in the example we map the
bottom 2 Gb of PLB addresses onto the OPB.

General

IP Core plbzopb_bridge

Yersion 1.01.a

Driver APL

Parameters
These are parameters set for this module. Refer to the IP documentation for complete information about module parameters.
Parameters marked with indicate parameters set by the user.
Parameters marked with indicate parameters set by the system.
R arne Valie %
C _BGL TRAMSABORT CMT 31 C_COPBE _DWIDTH 32
C CLE ASYMC i) C_PLE &WIDTH 22
C DCE_AWIDTH 1d C _PLE DWIDTH G4
Z_DCE BASEADDR Ob1111111111 C_PLE MID WIDTH 1
Z DCRE_DWIDTH 32 C_PLE MUM MASTERS Z
Z DCE HIGHADDR. [ufafu]u]u]u]u]ufulufuu} C RMNGO BASEADDR 0:00000000
Z DCE INTFCE 1 C_RMGO HIGHADDR 0:7FFFFFFF
Z FAMILY yirtex2n i RMG1 BASEADDE JxFFFFFFFF
C HIGH SPEED 1 i RMG1 HIGHADDE 000000000
C INCLUDE BGL TRAMSABORT 1 C_RMNGZ2 BASEADDR JxFFFFFFFF
C IR0 ACTIVE 1 C_RMNGZ2 HIGHADDR 000000000
- MO PLB BURST il C _RMNiG3 BAS@DR JxFFFFFFFF
C_MNUM ADDR.RMG 1 C_RMNG3 HIGHADDR 000000000
C_OPB_AWIDTH 32 —
Post Synthesis Device Utilization
Resource Type Used Awvailable Percent

Slices 590 4928 11
Slice Flip Flops 742 9856 7
4 inpuk LUTs 753 9856 7

In itself, it is not absolutely necessary to have an OPB in the project, we can get the embedded PowerPC
up and running without it. However, we want to access the LEDs, and the component that is capable of
accessing them is an OPB component. So for our example we do need the OPB.

Block Diagram (LEDSs)

To access the LEDs, we add an ‘interface’ that maps some addresses to access the LEDs. We cannot
access the LEDs just using the EDK. The LEDs are a feature of the HERON module, and there is no
standard Xilinx core component that will access the LEDs for us. Therefore, we place just the ‘interface’,
and in a later stage will connect the loose ‘wires’ of the ‘interface’ to the LEDs. The ‘interface’ is the Xilinx
OPB Core Slave Service Package 0 (‘opb_core_ssp0_ref’) component.

SLAVES O Fmyopb

opb_core sspl rof
S opb_core sspl

C

If you look at the component’s properties, you can see that it is mapped onto OPB address range
0x30000000 to 0x300000FF. If you would like to know more about the component, in ‘System Assembly
View’, if you double-click ‘opb_core_ssp(’, a window will open with its properties, if you click on
‘Datasheet’ the component’s datasheet will be opened. In particular, notice that the core implements 4

registers at addresses 0x30000000, 0x30000004, 0x30000008, and 0x3000000C. Each of these addresses
accesses just 1 LED, but each 8-byte value stored at an address controls the brightness of its LED! This
should make you understand the LEDs behaviour once the example bit-stream is up-and-running.

General

IP Core opb_core_ssp0_ref
Yersion 1.00.c
Driver API

Parameters

These are parameters set for this module. Refer to the IP documentation for
complete information about module parameters,

Parameters marked with indicate parameters set by the user.
Parameters marked with indicate parameters set by the system.

Mame Yalue
__b aseaddr 0x30000000
__f amily yirtexZp
h ghaddr 0x300000FF
n:: rir_baseaddr 0x30000100
c_rmir_highaddr Ox300001FF
Eupb awidth 32
c pb dwidth 32
E:_USEr_|d_|:|:|de 10
Post Synthesis Device Utilization
Resource Type Used Available Percent
Slices 128 4928 2
Slice Flip Flops 117 9856 1
4 input LUTs 73 qg256]

Block Diagram (JTAG Controller)

The JTAG controller is absolutely essential. Having the JTAG controller means that we can connect a
Xilinx Parallel Cable III/IV or Xilinx Platform Cable USB, and, after the bit-stream has been programmed
into the FPGA, we can access the embedded PowerPC and BlockRAM via the JTAG. This allows utilities
such as the XMD and GDB debuggers to run.

jtagppc_crtlr
jtagppe_cntlr i

A

Block Diagram (reset)

Most likely you will want to be able to reset the embedded PowerPC processor, and also hardware
components related to the embedded PowerPC, such as PLB and OPB, BlockRAM controllers and the
JTAG controller. Xilinx has a core block component that does just that: Processor System Reset Module,
instantiated as ‘proc_sys_reset’.

proc_sys resaef
resef_block

Block Diagram (clock)

Finally, we will also need a clock that drives the embedded PowerPC and all the components that we have
created in the design as shown in the Block Diagram. Xilinx has a core block component that does just
that: Clock Module Reference Core, instantiated as ‘clock_module_ref’.

clock module rof
m

B

Building the Example Project

Before we start building anything, we must verify that we have all components. The necessary components
are there: the system clock, system reset and JTAG controller. We have hooked up 16 Kb BlockRAM at
the top of the embedded PowerPC 4 Gb address space so that we have memory at address OxFFFFFFEFC
and near addresses. We have added an OPB and PLB-to-OPB bridge, and added a component that will
interface to the LEDs. The LEDs are not used yet; we will have to wire the LEDs up later. We have
verified that the PLB-to-OPB bridge maps a sensible range of addresses. There’s an additional 32 Kb
BlockRAM on the OPB.

To build the example project, select the menu item ‘Hardware — Generate Netlist’. If you look in the
‘PPC_Ex_A’ directory, you will see that a lot of files and several new directories have been created.

Build Results

Amongst the directories and files that have been created by the ‘Generate Netlist' step are
‘implementation’, ‘hdl’, and ‘synthesis’. The first thing that ‘Generate Netlist’ does is to run the ‘platgen’
utility. It is ‘platgen’ that has created the ‘implementation’, ‘hdl’; and ‘synthesis’ directories.

The ‘platgen’ utility operates on the ‘system.mhs’ file (mhs = microprocessor hardware specification),
which is a textual description of the hardware design created with XPS. The ‘system.mhs’ file is maintained
by XPS and is changed when you add, delete, or edit a component.

The ‘hdl’ directory contains the VHDL wrappers for the individual IP components in the embedded
8

PowerPC system. It also contains top-level VHDL for the embedded PowerPC system (‘system.vhd’) and
its instantiation (‘system_stub.vhd’).

The ‘implementation’ directory contains implementation netlists of the peripherals (*_wrapper.ngc’), and
a netlist for the system design (‘system.ngc’). Note also the ‘system.bmm’ and ‘system_stub.bmm’ files.
The bmm files (bmm = BlockRAM Memory Map) describe how individual BlockRAMs used to create a
continuous address space. Later on we will refer again to these two *.bmm files.

The ‘synthesis’ directory contains the synthesis project files for all individual IP components as well as the
synthesis project file for the overall embedded PowerPC system.

Exporting to Project Navigator

To hook up the LEDs into the project, we need to export the XPS system design into Project Navigator.
However, XPS assumes that there’s an existing Project Navigator project that it can export to. In the case
of this embedded PowerPC example, we simply use the ‘examplel’ project of the same module for this
purpose. We have copied the ‘ISE’ and ‘Src’ sub-directories of the ‘Examplel’ sub-directory into the
‘PPC_Ex_A’ sub-directory.

Examplel is a Project Navigator example that only uses the FPGA, that reads data from a FIFO, and then
writes the same data back onto another FIFO. We will not use any functionality of examplel; we just use
examplel to create a starting project so that we have a project we can export to. Instead of examplel, we
could just as well have used a different Project Navigator example, such as ‘Memory_Test(ex2)” or
‘Sdram_Fifo(ex3)’ (in the case of a HERON-FPGA9Y9 or HERON-FPGA12). In itself, we can export to
any Project Navigator project, but as we want to use a module feature (the LEDs) it is useful to use a
Project Navigator project that already incorporates and uses the HIL (the Hardware Interface Layer,
whose VHDL files are in the ‘Common’ directory).

First we have to tell XPS that we want to export, and then we have to specify to what Project Navigator

project the system information should be exported. Select ‘Project — Project Options’, then click the
‘Hierarchy and Flow’ tab, and make sure that ‘Use Project Navigator Implementation Flow’ is checked.
Also make sure that ‘Add modules to existing ISE file’ is ticked, and that the Project Navigator ‘.ise’ file in
the ‘PPC_Ex_A\ISE’ sub-directory is selected. The project in the ‘PPC_Ex_A\ISE’ sub-directory is called
‘ExA_Fpga9v.ise’. (In examplel the Project Navigator project was called ‘Ex1_Fpga9v.ise’, but we
renamed the copied file in ‘PPC_Ex_A\ISE’ to make clear we use a local copy of examplel and not
example] itself.)

‘% Project Dptions EI
Device and Repository | Higrarchy and Flow | HDL and Simulation |

— ¥ Processor Design iz a sub-module [Uncheck for top-level]

Top level instance name Iiuser_apx'isystem

—Synthesiz Tool far Mon-Hiling [Pz
Synthesize with Xiline 257 j

— v Use Project M avigatar Implementation Flow [ISE Flow instead of #F5] ——

v &dd Modules to Existing I1SE file

ISE File |3_8_1 WpgaIy1\PPC_Ew_aMSENERS,_Fpgady.ize Browse ... |

] 4 Cancel

Note also that we have denoted the Project Navigator project as the top level, and that the XPS design is
set to be a sub-module. The top of the whole design must be the file ‘top.vhd’ in the Project Navigator
(ISE) project, because this file handles important I/O interfacing issues. The top-level design created for
the PowerPC in XPS must be placed as a sheet in User_Ap (‘User_apl.vhd’ in this example) of the Project
Navigator (ISE) project.

There are key components in the Hardware Interface Layer (HIL) that take care of interfacing to HERON
FIFOs and DDR memory. These components must be what is used when accessing those particular
hardware resources.

Other functional elements, such as Flash Memory interfaces and UARTS, can be placed as blocks of
peripheral IP in the embedded PowerPC design. The appropriate hardware interface signals of those
components must then be connected to ports in the User_Ap (‘User_apl.vhd’ in this example) entity.

The next task is to export the embedded PowerPC design created in XPS. Unfortunately, the XPS “Tools

— Export to ProjNav’ does not work propetly. Therefore HUNT ENGINEERING has created a
batch file that will correctly export the XPS project, called ‘Export_to_ProjNav.bat’.

Export to ProjNav.bat Batchfile

Before running the batch file, let’s first have a look at it. The ‘Export_to_ProjNav.bat’ batch file is located
in the ‘PPC_Ex_A’ directory. The batch file’s contents are:

copy implementation\system_stub.bmm ISE\system.bmm

pjcli -v -f hunt_npl_cmdfile
The ‘system_stub.omm’ was generated in the previous step by the *platgen’ tool, when we did the
‘“Tools —» Generate Netlist’. A .bmm file is a text file that is used to track where each separate piece

of BlockRAM is placed within the FPGA. We use ‘system_stub.bmm’ and not *system.bmm’ because
we use the embedded PowerPC project as a sub-module, as you can see in the *Project Options’ box

10

above. We use the top level of the Project Navigator project.

The “pjcli’ tool will do the actual ‘export’. It changes the Project Navigator project by adding some
files to it, adding some directories, as specified by the “hunt_npl_cmdfile’ file. Let’s have a look the
file’s contents:

OpenProject(1SE\ExXA_Fpga9v.ise)
AddSource(. .\hdI\system.vhd, VHDL Design File)
SetProperty(Macro Search Path,._\implementation\, . _\hdI\system.vhd,
Implement Design)
SetPreference(UserLevel, Advance)
SetProperty(Hierarchy Separator,/,..\hdI\system.vhd,Synthesize - XST)
AddSource(system._bmm, top)
CloseProject()
First we can see how the Project Navigator project is opened (‘OpenProject(ISE\EXA_Fpga9v.ise)’).

Note how the project name is hard-coded here, so if you want to use this batch file for other embedded
PowerPC projects, you may have to edit the “hunt_npl_cmdfile’ file.

Next (‘AddSource(..\hdl\system.vhd, VHDL Design File)’), we see how the system level VHDL file of
the XPS embedded PowerPC project is added to the Project Navigator project.

In the next step (‘SetProperty(...)’), we see how the Project Navigator project is made aware of the
netlists in the XPS embedded PowerPC’s project (the netlists are of the individual components and of
the system level design).

Finally, the ‘system.bmm’ file is added to the Project Navigator project. This was the
‘system_stub.bmm’ file that we copied out of the XPS embedded PowerPC project before we ran
‘pjcli’.

If you were to run ‘Project —» Export to ProjNav’ (don’t, because it won’t work), you would find
that XPS creates a ‘npl_cmdfile’ of its own, and then runs “pjcli’ on that file. Our batch file does a

similar thing, but with the EDK that we have (7.1) ‘“Tools — Export to ProjNav’ doesn’t seem to
perform the correct steps.

Running the Batch file

With the Project Navigator project in place, and with the ‘Export_to_ProjNav.bat’ batch file using the
correct Project navigator project name, we are now ready to run the batch file.

Open a DOS-box and go to the ‘PPC_Ex_A’ directory. Then run ‘Export_to_ProjNav.bat’.

Project Navigator

When the batch file has completed, start Project Navigator and open the ISE project in the
‘PPC_Ex_A\ISE’ directory. What we need to do is ‘hook up’ the Xilinx interface core component we use
to access the LEDs with the actual LEDs of the HERON module.

In Project Navigator, open ‘system.vhd’. This file is actually in the “..\hdl’ directory, the export process
should have added this file to the Project Navigator project. Here you should see how a ‘system’ entity is
defined. The ‘system’ entity defines the interface between our embedded PowerPC XPS system and the
Project Navigator design.

11

entity system is

port (
sys rst_n - in std_logic;
sys clk : in std_logic;
GPI10 : out std_logic vector(0 to 3);

JTAG_TRST : in std logic;
JTAG_HALT : in std_logic
)
end system;

In the rest of the ‘system.vhd’ file you will no doubt recognize the components that we defined in the XPS

embedded PowerPC project. You can also view how XPS has generated VHDL to connect up all those
components.

Next, open ‘User_Apl.vhd’. You will find a ‘component system’ declared, matching the entity in
‘system.vhd’. In this example this has been prepared for you, but usually you would copy and paste the
entity definition out of ‘system.vhd’ into ‘User_Ap1l.vhd’, and change the ‘entity’ into a ‘component’.

The ‘system’ component is instantiated towards the bottom of ‘User_Ap1l.vhd’. Again, this is done for you
in this example, but usually you would instantiate a ‘system’ component yourself.
isystem : system
port map (
sys_rst_n => PPC_RESET,
sys clk => 0SC3,
GPIO => PPC_LEDS,
JTAG_TRST => VCC,
JTAG_HALT => VCC);

Again, we have already added the necessary signals to the VHDL: PPC_RESET, PPC_LEDS and VCC.
OSC3 was already part of the original ‘examplel” VHDL. PPC_RESET is a local signal, the inverse of
RESET, and relates to the reset component we added to the embedded PowerPC design in XDS. OSC3 is
the local oscillator, and relates to the clock component we added to the embedded PowerPC design in
XDS. The VCC signal is simply wired to 1°, as you would expect. Finally, PPC_LEDS is a 4-wire signal.

So, compared to the ‘Examplel” project, we have added a ‘system’ component and its instantiation, and 3
signals PPC_RESET, VCC, and PPC_LEDS. Now we are finally ready to connect the LEDs to the
embedded PowerPC LED interface. On line 642 in the User_Ap1.vhd file this happens:

-- Connect LEDs to the GPIO outputs from the PowerPC design
LED(3 downto 0) <= PPC _LEDS(3) & PPC _LEDS(2) & PPC LEDS(1) & PPC_LEDS(0);

Now we are ready to build the design. Make sure that ‘top-rtl’ is selected (in the ‘Sources in Project’
window), then right-click ‘Generate Programming File’ (in the ‘Processes for Source’ window) and select
‘Run’.

At this point you have a working bit-stream, and you could load it onto your device. But you won’t see the
LEDs flash (yet). That is because the BlockRAMs haven’t been initialized (yet), and the embedded
PowerPC would be executing whatever data happened to be in the BlockRAMs. Using XMD and the
software debugger you could at this point load an embedded PowerPC executable onto the device (how to
do this is explained later in this document), using the Xilinx Parallel/USB Cable and XPS. Loading the
embedded PowerPC with an executable (via XMD/Software Debugger) will store the executable’s code
and data in the BlockRAMs. If you then ‘run’ the code, in the Software Debugger, you would see the
LED:s flash. But for now, let’s continue and complete the process.

12

Importing back to XPS

We still want to create and add a C program to the project. To work with the embedded PowerPC, we
need to get back to XPS, but we need the additions created in the Project Navigator project. To get those,
we import the Project Navigator project back into our XPS project.

Unfortunately ‘Project — Import from ProjNav’ does not seem to work and therefore we need to
import the required files manually. Go to the ‘ISE’ directory and copy the files ‘top.bit’ and
‘system_bd.bmm’. Now go to the ‘implementation’ directory and paste the files. Finally right-click on
‘top.bit’ and click rename, change the name to ‘system.bit’.

As you can see not much work was required. Note that in the setup of this example we would always use
Project Navigator to create a bit-stream.

Also notice the ‘system_bd.bmm’ file, and how it differs from the original ‘system_stub.bmm’ that we
exported earlier out of the XPS embedded PowerPC project. If you compare them, you will see that the
BlockRAMs have been assigned to actual resources (PLACED = ...” encoding at the end of each line) in
the ‘system_bd.bmm’ file.

Building the embedded PowerPC Program

We have already prepared a working example C program for the embedded PowerPC. At this point we
just want to build the software project, and use it to initialize the BlockRAMs, so that we can create a bit-
stream where the embedded PowerPC can run proper code out of the BlockRAMs from the moment the
bit-stream is loaded. We will look later in more detail how to set up a software project, how to use the
debugger, and so on.

The first step in building the embedded PowerPC program is to create header files that describe the
embedded PowerPC system that we have created. This is simply done by ‘Software — Generate
Libraries and BSPs’ within XPS. If you look in the ‘PPC_Ex_A\ppc405_1" you will see that header files
describing the system are created into the ‘inc’ directory, and libraries in the ‘lib” directory. In particular,
review the ‘xparameters.h’ file, where you will recognize the addresses of the LED and BlockRAM
components that we defined in our XPS embedded PowerPC hardware design.

Let’s have a look at how the software project is setup in this example. Click on the ‘Application’ tab in the
left window in XPS. You will find here an embedded PowerPC software project with an example C file
(‘PPC_Ex_A.c’) already in the project. This is for this example only; usually you would create and add a
project yourself, then create and add C source files to the software project.

Project | &pplications IIF' Catalag

Software Projects
FioAdd Software Application Projsct. .

=- %Fmiect: ppcd05_1_default
-- Froceszor ppod05_1
Executable: E:\FK.ennethfpga_8_1%pgaSw1\PPC_E«_ahppcd05_1
-- Compiler Options
El Sources
e EAKennethyfpoa_8 14pgaSyl1WPPC_Ex_ANPPC_Ex_b.c

13

Let’s have a quick look at the C code of ‘PPC_Ex_A.c’. First, you will find pointers that are initialized to
where the 4 LEDs are:

volatile int *led0 = (int *)0x30000000;
volatile int *ledl = (int *)0x30000004;
volatile int *led2 = (int *)0x30000008;
volatile int *led3 = (int *)0x3000000C;

You will recognize the address (0x30000000) from the LED component’s (‘opb_core_sspO_ref)
properties in the XPS embedded PowerPC hardware design (page 7 of this document). As you may recall
from this component’s PDF file, it implements a number of registers, 4 of which address an LED each.
The value written to an LED relates to the brightness that the LED will glow with.

So, to switch an LED off, you write OxFF (255) to a LED’s address, to switch it fully on, you write 0 to an
LED’s address. Any other value represents brightness in between off and fully on.

To create an embedded PowerPC ELF file, do a ‘Software — Build All User Applications’. The
embedded PowerPC executable is called ‘executable.el and is deposited into the
‘PPC_Ex_A\ppc405_1\code’ directory.

powerpoc-eabhi-size ppod405 1/code/executable.elf
text data h== dec hex filensme
1170 836 gz2z0 10226 27f2 ppeo405 1/code/executable.elf

GHNU 1d wersion 2.15

Done !|

Adding the ELF Executable to the Bitstream

Now that we have created an executable (embedded PowerPC ELF format), we want to initialize the
BlockRAMs with it. In the embedded PowerPC system design there was a piece of memory attached to
the PLB, at address OxFFFFCO000. In the bit-stream we have now (‘system.bit’) this memory (BlockRAMs)
is as yet un-initialized.

First, make sure that is ‘Mark to Initialise BRAMS’ is ticked (right click on ‘Project:...” as show below).

Project | Applications IIF' Catalog |

Software Projects
c_J4dd Software Application Project...
ﬁlﬁlefault: ppcdS 1 boothoop

El ,!,'# Projectas

Set Compiler Options. ..

[+ Process:
IOV 1ar) bo Tnitialize BRAMs (RSN L
[+~ Compiler))
E| S ouices Build Praject
b Eih Clean Project A o
----- Headers

Delete Project, ..

Make Project Inackive

Generate Linker Scripk. ..

14

Now run ‘Device Configuration — Update Bitstream’ from within XPS. This process will take the bit-
stream, ‘system.bit’ and use this and the embedded PowerPC ELF executable, to create a new bit-stream,
‘download.bit’. In this new bit-stream, the BlockRAMs (of the memory at OxFFFFC000) will be initialized
with the PowerPC executable’s code and data.

Note how first ‘bitinit’ is used, and then the ‘dataZmem’ utility, to create the ‘download.bit’ bit-stream,
using the ‘system.bit” bit-stream (copied from the Project Navigator directory earlier on), the embedded
PowerPC ELF executable, and ‘system_bd.bmm’ as input files.

Inalvzing file pped05S_1/code/executable.elf...

Funning DataZlMem with the following comtoand:

dataZmem -hm implementatinnﬁsystem_bd -ht implementationssystem.bit -hd
ppc%DE_chudeIexecutable.elf tay inst bram bhlock inst plb bram block -o b
implementation/download. bit

Hemory Initialization completed succeszfully.

Done!

Running the Bitstream

There are two ways to run the bit-stream that we just generated. The first is to use the HUNT
ENGINEERING Confidence Checks program. Start this program (Start — Programs — HUNT
ENGINEERING — Confidence Checks), then select ‘FTPGA — Program FPGA’. Click ‘Detect’ or
fill in the ‘Board’, ‘Nu.” and Slot’ fields yourself. Browse to the PPC_Ex_A\implementation’ directory
and open ‘download.bit’. Finally, click ‘Program FPGA’. After the programming completes, you should
see the LEDs light up, running from left-to-right, then from right-to-left, continuously.

Instead of using the Confidence Checks, you can also use IMPACT’. You need to use a Xilinx Parallel
Cable IV or Xilinx Platform Cable USB to program the FPGA. There is a separate document that
describes how to use ‘GMPACT’ to program the FPGA with a bit-stream. (On the HUNT
ENGINEERING CD: Application Notes — HUNT ENGINEERING papers and apps notes
— Using Impact and HERON modules, and read the ‘Downloading Bit-streams via JTAG’ chapter
towards the end of this document). Where you get to ‘Assign New Configuration File’, select the
‘download.bit’ bit-stream in the ‘PPC_Ex_A\implementation’ directory. After programming the FPGA,
you should see the LEDs light up, running from left-to-right, then from right-to-left, continuously.

The embedded PowerPC project in more detail

We quickly brushed over the embedded PowerPC project, and built it without looking how the software
project was setup. We will now look in detail at the software project within this example XPS project, and
show how to use the debugger (XMD and the Software Debugger (GDB)) that come with the EDK.

First we will look at the settings used in the embedded PowerPC software project. Note that several
different Kernels and Operating Systems can be used with the embedded PowerPC (with the 8.1 EDK,
used when writing this document, these are the Xilinx Kernel, VxWorks, and Linux), but we will use
Stand-Alone mode.

(1) Verify Kernel/Operating System

First, verify that the software environment is configured to be in ‘standalone’ mode. Click ‘Software
—> Software Platform Settings A window will appear from which you can verify the OS setting.

15

& Software Platform Settings | x|
-Pracessar [nformation -
Processor Instance: I ppodlE 1 -
Software Flatiorm Processoe Settings
035 and Libeasies CPU Driver: | cpu_ppcdlS "I CPU Diiver Yersior: I'I.D[I.a vI
Dibvers Processor Parameters:
Irienpt Handlers MName I Cumrent Value | Default Valie I Type | Dezcription
= pped0&_1
- EXTRA_COMPILER_FLAGS -g -0 sthing Extra compiler flags used in BSP and Borary generation.
ARCHIYER povesipe-eabi-ar powerps-aabi-ar sting Auchiver uzed bo archive lbsanies for both BSP generatio
i COMPILER powepc-eabi-goe powespo-esbigoe sting Comples used to comple both BSP branes and applicat
“eCORE_CLOCE_FREQ_HE 400000000 400000000 nt Care Clock Frequency inHz
2 i

— D5 & Liray Settings

05 [standalone = 0% Wemsiore | 1.00.a = Default software platfoern. Provides basic processor related functions and basic ﬂ

NS like finrtines sach as standar oo aoel oot

Use| Libiay | “ersion Diesciiplion
winiet 200.a x| Hilins Metworking TCPAP stack library
I s 1.00.a = | line Memany File Systemn
I il 1.00.a * | Frovides file spstem cal access to simple senal |0 devices ani
I wifaifs 1.00a = | Provides readfvite routines to access bles stored on & FAT1G,
I lwip 200.a LI lwlP TCFAP Stack library

Download ThirdPaity 05 & Library Definition Files here

(1]4 | Cancel

(2) Add Sources

In this example, the ‘PPC_Ex_A.c’ file has already been added to the project. But if you were to start and
create a new project, you would have to add the example C file, PPC_Ex_A.c’, to the project. To add a C
file to your embedded PowerPC project: right-click ‘Sources’ then click ‘Add Existing Files . . .” and select

‘PPC_Ex_A.c’.

Project | Applications IIF' Catalog

Software Projects

lc_J4dd Software Application Project...

mDefault: ppcd05_1_boaotloop

=8 I-g';ﬂ“F"n::if:nt:t: ppcd405_1_default

Processar ppod05_1

Ewecutable: E:\Kennethhfpga_8_1%poa3w1WPPC_Ex_
Compiler Options

g Files. ..
Add Mew File, .

16

(3) Verify BlockRAM addresses

We must make sure that the software project knows at what address memory starts. First we must make
sure that we verify in the XPS hardware project what that address is. We have seen earlier how this could
be done, but a quick way is to go to the ‘System Assembly View’, select the filter to be ‘Addresses’, and
find the BlockRAM controller component. The start and end address of the BlockRAM should be
displayed. With this example, the start address is OxFFFFC000, but this may be different if you changed
the embedded PowerPC hardware design.

= —Filterz
: { Busz lnterfface § Ports % Addresses |l Generate Addresses |
|nztance MName Addrezs Baze Addiezz | High Addiess I Size | Lock

myopb Ox00000000 O0«00000FFF 4K O
pped05 1 MOCH DSOCM_DCR U |
ppecd05 1 MOCH [SOCKM_DCR U [
myplb SDCR u O
inzt_plbZoph_bridge SOCR DCR] ||
inzt_opb_bram_if_cntlk SOPB c_bazeaddr.c_highaddr (=1 Q000000 O«10007FFF 32k [
opb_core_zspl SOPB c_baszeaddr:.c_highaddr (30000000 0x300000FF 256 [
opb_core_sspld SOPB c_mir_bazeaddr.c_mir_highaddr 030000100 0x200001FF 256 [
Eir'l zt_plb_bram_if_cntlr SPLE c_bazeaddrc_highaddr OxFFFFCO00 OxFFFFFFFF |
inst_plb2opb_bridge SPLE RHGD 000000000 O«7FFFFFFF - 206 [
inzt_plbZopb_bridge SPLE RMGT] O
ingt_plbZopb_bridge SPLE RMGZ] |
inzt_plbZopb_bridge SPLE AMG3] |

(4) Edit Compiler Options

Next, verify that your project settings are correct. Right-click ‘Project’, then select ‘Set Compiler Options’.

Froject | Applications IIF' Catalog |

Software Projects
¢ J&dd Software Application Project...
ﬂ[ﬁlefault: ppcdl5

1_bootloop
(11} [
Set Compiler Options. .,

Mark to Initislize BRAMs PO

Build Project
Clean Project

Delete Project, .,

Make Project Inactive

Generate Linker Script.. .

17

A window will appear, entitled ‘Set Compiler Options’, where ‘ppc405_1_default’ is the name of the
embedded PowerPC software project.

% Set Compiler Options x|

Compiler Tools: powerpc-eabi-goe

Debug and Optimization | Fathz |.-’-'-.|:Ivan|:ed |

—&pplication kMode

¥ Executable & XmdStub [smdstub_peripheral : not assighed)

—Output ELF file

|_1 WfpgaIv1WPPC_Ex_a\ppcd5_1code'executable. elf Browse ..

—Linker Script
-[7 Usze Custam Linker Script

I Browse .. |

-[v Use default Linker Script

Program Start Addreszs |0<FFFFCO00

Stack Size I

Heap Size I

k. Cancel

At the ‘Environment’ tab, make sure that the Program Start Address’ is set correctly. It must match the
start address of the BlockRAM, which you verified in the previous step, 3. In this example, if you look
back at step 3, where you verified the BlockRAM start address, the correct address is OxFFFFCO000. If you
leave the ‘Program Start Address’ field empty, the software tools will use the default start address,
OxFFFF0000.

At this point you can also initialise the stack and heap size. If these fields are left empty, the software tools
will use default stack and heap sizes of 4 Kb. In our case we have 16 Kb BlockRAM and only a very small
C program so we take the default values (i.e. we leave the fields empty).

When done, click on the ‘Debug and Optimization’ tab. We want to enable debugging, as we intend to use
the GDB debugger later on, so we need symbol information to be generated. Tick ‘Generate Debug
Symbols’, and select ‘Create symbols for debugging (-g option)’, and at ‘Optimization Level” select ‘No
Optimization’. When done, click ‘OK.

18

% Set Compiler Options x|

Compiler Tools: powerpc-eabi-goo

Environment | D'ebug and Optimization I Fathz | Advanced

— O ptimization Parameters

Optimization Level irnization

[~ Usze Global Pointer Optimization

— v Generate Debug Symbolz

{+ Create Symbals for Debugging [-g option)

{~ Create Symbals for Assembly [-gstabs option)

Mate: [F both optimization level and debug option are set, the information
may not corelate to source code.

2k, Cancel

(5) Build Project

Now the project is ready to be build. This can be done via ‘Software — Build All User Applications’.

Hardware | Software Device Configuration Debug
n JJ i F7 Software Platform Settings. ..

— Assign Default Drivers

w
1z 11=12

? Catalog I Ut Generate Libraries and BSPs

[c] Add Software Application Project. ..
ian Praject.. é Build all User Applications
atloop
_default

et Program Size
Generate Linker Script...
sthivfpga_B_ gﬁ' Launch Platform Studio SO

Clean Libraries

)

Clean Programs

Clean Software
T

I

19

Make a note of the executable file that is produced (‘executable.elf’) and its path.

collectZ wersion 3.4.1 (Xilinx EDK &.1.1 Build EDE I1.12.3 1520106) (PowerPC Em
feygdrive/c/EDE 8 1/gnw/powverpo-eabi/nt/hin/. ./ lik/gee/powerpe-eabi/3. 4.1/ ../ . .,
GHT ld wersion 2.15

Lext data h=s dec hex filenaume
200z 836 gz220 110558 2b3z ppc&DE_lchdEfexecutable.Elf
Done !

Download the Bitstream

Before you can load and debug your embedded PowerPC program, you must first load the bit-stream.
You can use either the ‘download.bit’ or ‘system.bit’ in the ‘PPC_Ex_A\implementation’ directory. Or
you can use the ‘top.bit’ or ‘top.tbt’ in the ‘PPC_Ex_A\ISE’ directory.

You can use Impact to download a *.bit file, but you could also use the HUNT ENGINEERING tools to
program the bit-stream. If you use the ‘download.bit’ bit-stream, the LEDs will start flashing as soon as
the Virtex II Pro or Virtex 4 has been programmed. When you use any of the other bit-streams mentioned
(‘system.bit’, ‘top.bit’, or ‘top.rbt’) the LEDs will not flash after programming. But you might prefer these
bit-streams, as it will clearly demonstrate that XMD and the software debugger use BlockRAM by loading
and running code out of it.

Start XMD

XMD is the Xilinx embedded PowerPC debugger, which gives you low-level debug access to the
embedded PowerPC. You need to have a Xilinx Parallel Cable III/IV or Xilinx Platform Cable USB
attached to the HERON module at this point. The program loading and debugging session will proceed
via this JTAG cable.

In Xilinx Platform Studio, start XMD. With version 8.1 of the tools, that is ‘Debug — Launch XMD. .’
A DOS box will now appear.

\EDK_8_1'bin"nt"xmd.exe

Cahle connection estabhlished.

Firmware verszion = 1H818.

CPLD file version = BABGH.

CPLD version = BBAHGh.

INFO:=MDT - Assumption: Selected Device 1 for debugging.

JTAG chain configuration
ID Code IR Length Part Mame

H124a823 18 AC2UP?Y
ALA57073 16 HCFasP

#MD: Connected to PowerPC target. Processzor Uersion Wo - BxZ200188ad
Address mapping for accessing special PowerPC features from AHMD-GDE:

Dizahbhled
Dizahled
Dizahbhled
Dizahled
Dizahbhled
Dizahled
Dizahbled

I-Cache <Data
I-Cache <Tag>
D—Cache (Data
D—Cache <Tag>
IS0CH

TLE

DCR

Connected to "ppc' target. id = @
Starting GDB server for “ppc" target €id = 8> at TCPF port no 1234
MDD

20

If XMD does not connect to the embedded PowerPC automatically as shown above, then you need to
connect it manually.

If you have a type III parallel cable, type:
connect ppc hw —cable type xilinx_parallel3

If you have a USB cable, type:
connect ppc hw —cable type xilinx_platformusb

To verify that you have a proper connection, type:

rrd

_ 1 bin'nt' xmd.exe
L5 7893 i6 HCFAgP

#MD: Connected to PowerPC target. Processor Uersion Ho @ Bx200108a0
Addrezsz mapping for accessing special PowerPC features from AMD-GDB:

I-Cache <Datal Dizabled

I-Cache (Tag» Dizsahled

D—Cache <Datal Dizabled

D—Cache (Tag> Dizsahled

IS0CH Disabled

TLB Dizahled

DCR Disabhled

Connected to ""ppc' target. id = @

ﬁﬁﬁrting GDB zerver for "ppc' target Cid = B» at TCP port no 1234
®orr
rd: AAl6AAAA ri: 3I000AAA4 rio: fEFFffff r2d: fEFFffff
ri:z FEFFA?AB r%: ABBOAAE vri?: EFEFFEET r25: FFFFFfEEf
rZ2: ABBB4480 rifA: I00AAABA riB: fFFffffff rZb: fEFFffff
r3: BAl6e36A ril: 3I80AAAAC ri9: EFFFFFET r27: EFEFFEET
r4: AABEAAeRA ri2: BP16BA6A r2@: fEFfffff r2B: FEFfffff
rh: BABBAACA ri3: BBOA47hLA vr21: FFFFFEET r29: FFFFFfEeEf
rb: AABBAAAA rid: FEFFFfff r22: fFFfffff r3@: FEFFffff
r7: 3800A6BA8 rih: FEFFFEET r23: EFFEFFFEf r31: FFEFFFET
pc: FEFfc38@ msr: BAAAAADA

The ‘rrd” command reads the embedded PowerPC registers. If you see their contents printed, the
connection is working. If not, then try again making a connection with ppcconnect. If you use printer
port LPT?2 instead of LPT1, then:

ppcconnect -cable port Ipt2
As said eatlier, you must have a bit-stream programmed into the Virtex IT Pro/Virtex 4 device for XMD
to be able to connect to the PowerPC. XMD has a help page that displays if you type ‘help’ in the DOS
box. When you do this, you can see that XMD is an elementary debugger that allows you to read and
change register values, memory, run and set breakpoints, single step, and lots of other things, but all on a
processor level.

Software Debugger

In Xilinx Platform Studio, now start the Software Debugger. In version 8.1 this is done with ‘Debug

— Launch Software Debugger . . . First a DOS box will appear, but ignore this. Five to ten seconds
later a proper window will appear. This is GDB, the GNU debugger, but it is called ‘Software Debugger’
by Xilinx. On the top bar it will say PPC_Ex_A.c’ - Source Window’.

21

PPC_Ex_A.C - Source Window =10

File Run Wiew Control Preferences Help
R R NN IR - AT a— o
|PPC_Ex_n.c > |main | [sourcE =

FY

1
2

3

4 yolatile int =1ledB® = (int =)0x20000000;
L yolatile int =ledt (int =)0x3000000%;
i
Fi
8
9

volatile int =led2 {(int =)0x30000068;
volatile int =led3 (int =)B8x3000806C;

18 int main{)

- 11 {
12 int n,wait;
13
14 while (1) {
- 15 *1edd = Bx00;
- 16 *1ed1 = BxFF;
- 17 *1ed2 = BxFF; ;I
IF'ru:ngram not running. Click on run icon to skark, |I-]xFFFFI:1 I:IB| 11

Although the Software Debugger shows a blue bar on the ‘{’ line, the executable has not been loaded yet
and we are not yet debugging. First we need to ‘connect’ GDB to the XMD. XMD listens on port 1234 to

requests from GDB. In the GDB window, do a ‘Run — Connect to Target’. A “Target Selection’
window appears. In the ‘Connection’ section, for “Target’ choose ‘Remote/TCP : XMD’, for ‘Hostname’
type ‘localhost’ (if not already there), and for ‘Port’ type ‘1234 (if not already there). Then click ‘OK.

Target Selection x|

¥ sSet breakpoint at 'main’

— Connection
¥ Set breakpoint at 'exit!

Target: IRethe,l'TCP L EMD ﬂ

Hostname: |I|:n:a|h|:|st I Set breakpoint at I

Part: |1234 [Display Download Dialog

[Use xterm as inferior's ey

B More Opkions

Cancel

Help |

22

GDB should reply with showing a message box saying ‘Successfully connected’.

| Gos

@ Successfully connected

At this point, the Software Debugger (GDB) is connected to the embedded PowerPC, but we still have no
program in BlockRAM. That is, if you used the ‘system.bit’, ‘top.bit’ or ‘top.rbt’” bit-streams. With the
‘download.bit’ bitstream the BlockRAM would have been initialised already with executable code (but not
necessarily with the code of the executable we want to debug now). Do a ‘Run — Run’, this will load
our PowerPC ELF executable and run to main.

File | Run Wiew Control Preferences Help

Conneck to bargek R
% cnl+n"hﬁ§ﬁ

Download

Bun R I ﬂ

Disconneck

|SElE‘E‘I_—FU'rrI:'I_TI:I11—n'c|TrrE—I_'I:I' disassemble

GDB should now show our ‘PPC_Ex_A.c’ file with a green bar on the first line in ‘main’.

PPC_Ex_A.c - Source Window

File Fum “iew Control Preferences Help

VT DT EAES M-S rina |

|PPI.':_E:-:_F|.[: Rd |main Rd

4 yolatile int =1ledd = {int =)08x30000000;
L vplatile int =ledi = {int =)8x30000004;
6 volatile int =1ed? = {int =)8x30000008%;
7 volatile int =1ed3 = {int =)8x3000000C;
8
9
18 int main{)

[
12 int n,wait;
13
14 while (1) ¢

- 15 *]ledd = Bx080;

- 16 *#*]1ed1 = BxFF;

- 17 *1ed2 = BxFF;

- 18 *#*1ed3 = BxFF:

IPngram stopped at line 11

23

Now the system is ready for debug: the executable is loaded (into PLB BlockRAM), and the Software
Debugger has run successfully until the first line in ‘main()’. You can single step by pressing ‘s’ (or via

Control — Step). If you Single Step a few times, you will see the LEDs associated with ‘led1’, led2’ and
‘led3’ switch off.

You can place a breakpoint by clicking on the ‘-’ before a line number; a red square dot should appear in
its place. To remove a breakpoint, click once on the red square dot before a line number. To run to a
breakpoint, press ‘c’ (or do a Control = Continue), but don’t mistakenly do a ‘Run — Run’ (shortcut:
‘") (as this will restart the debug session).

If you find that the GDB debug window doesn’t show PPC_Ex_A.c’ but some other C file, GDB might

be confused and has loaded another program. Use GDB’s ‘File = Open’ to select the program you want
to debug. The File menu also shows shortcuts to programs you used or opened before.

If you find that you can only see disassembly but no C code, then you have forgotten to switch on
debugging information (-g option) in the Compiler Settings.

Booting Process and BlockRAM

The embedded PowerPC 405 will at reset start executing at address OxFFFFFFFC. When your project
was built as a standalone project, the build tools will have added code (a jump instruction) at
OxFFFFFFFC. However, a 32-bit jump instruction can only jump to a 24-bit address. Therefore, the build
tools have added another bit of code, 4 instructions, not too far away from address OxFFFFFFFC. The
instruction at OxFFFFFFFC will branch to these 4 lines of code. It is here, in these 4 lines, that a full 32-
bit jump is possible, and from here a jump will be made to the user program, where ever it happens to be
located in the 4 Gb embedded PowerPC address space.

You can see this behaviour by resetting and loading your program, and not do a run to ‘main’. In the GDB
debug window, do a ‘Run — Run’, then a ‘Run — Download’. In the XMD window you should now
see

XMD% PC reset to OxFFFFfffc, Clearing MSR register

In the XMD window, type
rrd

and then type return. The registers display will show the PC set at OxFFFFFFFC.
Do another XMD single step, type:

stp
and then type return, in the XMD DOS box.

In my case the PC now becomes OxFFFFEIBO, but the precise value may be different in your case. Do
another single step, and the PC becomes OxFFFFE9B4. A third single step, and the PC becomes
OxFFFFE9BS, and after a fourth single step the PC becomes OxFFFFEIBC. If you do another single step,
program execution will now jump to your application. In my case the PC is now at address OxFFFFC520.
But this address may well be very different in your case, as every application will likely have a different
start address. (Note that the start address is the °_crt0’” code start address, not the address of main. The
code in crt0 sets up the stack, initialises the dynamic memory system (malloc etc) and does other
initialisations and then calls your ‘main()’ function. The code for crt0 is in
‘ppc405_1\libsrc\standalone_v1_00_a\stc’ directory, named ‘crt0.S’; in assembly code).

Because of this behaviour of the embedded PowerPC at reset, your hardware design must have a piece of
BlockRAM that extends up to address OxFFFFFFFF. Typically you would place 4 Kb to 32 Kb of
BlockRAM at the top of the 4 Gb address range. For example, with 16 Kb BlockRAM placed at
OxFFFFC000 you would cover the top 16 Kb.

24

The Boot Process and XPS Software Tools
If you look in the ‘ppc405_1\libsrc\standalone_v1_00_a\stc’ directory we can find the assembly code for
the start-up code in the file ‘boot.S’. Here we can see:

-File "boot.S"

-section .bootO,"ax"

-global _bootO

_bootO:
lis 0, _start@h
ori 0, 0, _start@l
mtlr O
blr
.section .boot,"ax"
-global _boot
_boot:

b bootO

The ‘_boot’ label would be mapped onto address OxFFFFFFFC. At the ¢ _boot(’ label we can see how a
register is initialised with a °_start’ address, the entry point of the embedded PowerPC executable. The
code then jumps to the address that the register points to.

Adding your embedded PowerPC Executable Code to the Bitstream

Once you have completed development of the software, you probably want the software to start at the
same time that the bit-stream is loaded, without using XMD or the Software Debugger (GDB). This can
be done with ‘Device Configuration — Update Bitstream’. What will happen is that the BlockRAM’s
contents (in the bit-stream) are initialised with the embedded PowerPC executable’s code and data. Then,
as soon as the bit-stream is loaded, whether via Impact or via HUNT ENGINEERING’s hrn_fpga, the
embedded PowerPC code will start to run, as the code and data already exist in memory.

First, make sure that is ‘Mark to Initialize BRAMS’ is ticked (right click on ‘Project:...” as show below).

Fraoject | Applications IIF' Catalog |

Software Projects
: b e JAdd Software Application Project...
? Default |:||:||:4EIE 1_bootloop

! Build Project
b Clean Project

Delete Project. ..

Make Project Inactive

Generate Linker Scripk., ..

Now run ‘Device Configuration — Update Bitstream’ from within XPS. This process will take the bit-
stream, ‘system.bit’ and use this and the embedded PowerPC ELF executable, to create a new bit-stream,

25

‘download.bit’. In this new bit-stream, the BlockRAMs (of the memory at OxFFFFC000) will be initialized
with the embedded PowerPC executable’s code and data.

Use Impact to program the bit-stream, but be sure to use the file ‘download.bit’ instead of the file
‘system.bit’.

The above will work when your embedded PowerPC executable fits within the BlockRAM that you placed
at the top of the 4 Gb PowerPC address space. If your application is too big to fit in BlockRAM, enlarge
the BlockRAM sufficiently so that your program will fit. BlockRAM is a finite resource and your
application may be too big even if you use all available BlockRAM. In such cases you may have to use
external memory to store your application.

The Xilinx Bootloop

You may wonder why there is such a thing as ‘Mark to Initialise BRAMs’. This setting allows you to select
whether to update the bitstream with your application or with the ‘bootloop’. But what is a bootloop? This
is what Xilinx says in the ‘Initialise Bitstreams with Bootloops’ section of the ‘Platform Studio User
Guide’.

Once the FPGA has been configured with a bitstream, the processor is brought out of reset and starts
executing. If the system has not yet been initialized with the software application, the processor may
execute code that puts it into a state that it cannot be brought out of with a soft reset. The processor must
therefore be kept in a known good state until the system can be completely initialized.

A bootloop is a software application that keeps the processor in a defined state until the actual application
can be downloaded and run. It consists of a simple branch instruction, and is located at the processot’s
boot location. XPS contains a predefined bootloop application. To use a bootloop, the software
application is created as usual. The linker script used is no different from the case in which no bootloop is
used, i.e., the software application should contain instructions at the processor’s boot location.

The software application should not be used to initialize the system BRAMSs. Right click on the project
name in the tree view, and ensure that ‘Mark to Initialize BRAMS’ is not selected. If it is, deselect it. To
initialize BRAMs with the bootloop, right click on the default bootloop project (‘ppc405_1_bootloop’) in
the tree view and click on ‘Mark to Initialize BRAMs’.

Froject | Applications IIF' Catalag

Software Projects
- C]4dd So

ftware Application Project...

Update the bitstream with the bootloop by selecting ‘Device Configuration — Update Bitstream’ in the
main XPS window.

This bitstream may then be downloaded to the FPGA. The software application may then be downloaded
using either XMD or System ACE.

If you view the source code of the bootloop, it is simply a continuous jump to itself, as you would expect:

.section “_boot”,”ax

_boot: b _boot

26

27

	Introduction
	EDK
	Tool Flow
	Using PowerPC Example A
	
	Block Diagram (memory)
	Block Diagram (plb to opb bridge)
	Block Diagram (LEDs)
	Block Diagram (JTAG Controller)
	
	
	Block Diagram (reset)
	
	Block Diagram (clock)
	Building the Example Project
	Build Results
	Exporting to Project Navigator
	Export to ProjNav.bat Batchfile
	Running the Batch file
	Project Navigator
	Importing back to XPS
	Building the embedded PowerPC Program
	Adding the ELF Executable to the Bitstream
	Running the Bitstream
	The embedded PowerPC project in more detail
	(1) Verify Kernel/Operating System
	(2) Add Sources
	(3) Verify BlockRAM addresses
	(4) Edit Compiler Options
	(5) Build Project
	Download the Bitstream
	Start XMD
	Software Debugger
	Booting Process and BlockRAM
	The Boot Process and XPS Software Tools
	Adding your embedded PowerPC Executable Code to the Bitstream
	The Xilinx Bootloop

